These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19881642)

  • 1. Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination.
    De AK; Roy D; Dutta A; Goswami D
    Appl Opt; 2009 Nov; 48(31):G33-7. PubMed ID: 19881642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized optical trapping of gold nanoparticles.
    Hajizadeh F; Reihani SN
    Opt Express; 2010 Jan; 18(2):551-9. PubMed ID: 20173874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Stable Trapping of Single Macromolecules in Solution.
    De AK; Roy D; Goswami D
    Proc SPIE Int Soc Opt Eng; 2010 Aug; 7762():. PubMed ID: 23814448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.
    Shane JC; Mazilu M; Lee WM; Dholakia K
    Opt Express; 2010 Mar; 18(7):7554-68. PubMed ID: 20389777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-threshold supercontinuum generation in glasses doped with silver nanoparticles.
    Driben R; Husakou A; Herrmann J
    Opt Express; 2009 Sep; 17(20):17989-95. PubMed ID: 19907588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inversion of gradient forces for high refractive index particles in optical trapping.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation.
    Roy D; Goswami D; De AK
    Appl Opt; 2015 Aug; 54(23):7002-6. PubMed ID: 26368367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser tweezers are sources of two-photon excitation.
    König K
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):721-33. PubMed ID: 9764743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam.
    Cheng H; Zang W; Zhou W; Tian J
    Opt Express; 2010 Sep; 18(19):20384-94. PubMed ID: 20940930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical trapping of nanoparticles by ultrashort laser pulses.
    Usman A; Chiang WY; Masuhara H
    Sci Prog; 2013; 96(Pt 1):1-18. PubMed ID: 23738434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical forces on small magnetodielectric particles.
    Nieto-Vesperinas M; Sáenz JJ; Gómez-Medina R; Chantada L
    Opt Express; 2010 May; 18(11):11428-43. PubMed ID: 20589003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization gradient: exploring an original route for optical trapping and manipulation.
    Cipparrone G; Ricardez-Vargas I; Pagliusi P; Provenzano C
    Opt Express; 2010 Mar; 18(6):6008-13. PubMed ID: 20389620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Spatio-Temporal Control in Optical Trapping.
    Roy D; De AK; Goswami D
    Proc SPIE Int Soc Opt Eng; 2009 Aug; 7400():. PubMed ID: 23814446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.
    Wang LG; Chai HS
    Opt Express; 2011 Jul; 19(15):14389-402. PubMed ID: 21934801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation.
    Devi A; De AK
    Opt Express; 2016 Sep; 24(19):21485-96. PubMed ID: 27661888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence advantages with microscopic spatiotemporal control.
    Goswami D; Roy D; De AK
    Proc SPIE Int Soc Opt Eng; 2010 Feb; 7569():. PubMed ID: 23814447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing nanoparticles using a double nanohole optical trap.
    Kotnala A; DePaoli D; Gordon R
    Lab Chip; 2013 Oct; 13(20):4142-6. PubMed ID: 23969596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential energy profile of colloidal nanoparticles in optical confinement.
    Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD
    Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.