BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19882150)

  • 1. Extrapolation of vertical target motion through a brief visual occlusion.
    Zago M; Iosa M; Maffei V; Lacquaniti F
    Exp Brain Res; 2010 Mar; 201(3):365-84. PubMed ID: 19882150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation.
    Bosco G; Carrozzo M; Lacquaniti F
    J Neurosci; 2008 Nov; 28(46):12071-84. PubMed ID: 19005072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.
    Maffei V; Macaluso E; Indovina I; Orban G; Lacquaniti F
    J Neurophysiol; 2010 Jan; 103(1):360-70. PubMed ID: 19889846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction.
    Russo M; Cesqui B; La Scaleia B; Ceccarelli F; Maselli A; Moscatelli A; Zago M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2017 Oct; 118(4):2421-2434. PubMed ID: 28768737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular tracking of occluded ballistic trajectories: Effects of visual context and of target law of motion.
    Delle Monache S; Lacquaniti F; Bosco G
    J Vis; 2019 Apr; 19(4):13. PubMed ID: 30952164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.
    Zago M; La Scaleia B; Miller WL; Lacquaniti F
    J Vis; 2011 Sep; 11(10):13. PubMed ID: 21933933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting curvilinear target motion through an occlusion.
    Mrotek LA; Soechting JF
    Exp Brain Res; 2007 Mar; 178(1):99-114. PubMed ID: 17053910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.
    Indovina I; Maffei V; Lacquaniti F
    Exp Brain Res; 2013 Sep; 229(4):579-86. PubMed ID: 23807477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.
    Zago M; Lacquaniti F
    J Neurophysiol; 2005 Aug; 94(2):1346-57. PubMed ID: 15817649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mental imagery of gravitational motion.
    Gravano S; Zago M; Lacquaniti F
    Cortex; 2017 Oct; 95():172-191. PubMed ID: 28910670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body orientation contributes to modelling the effects of gravity for target interception in humans.
    La Scaleia B; Lacquaniti F; Zago M
    J Physiol; 2019 Apr; 597(7):2021-2043. PubMed ID: 30644996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interception of targets using brief directional cues.
    Mrotek LA; Flanders M; Soechting JF
    Exp Brain Res; 2004 May; 156(1):94-103. PubMed ID: 14722701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast adaptation of the internal model of gravity for manual interceptions: evidence for event-dependent learning.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2005 Feb; 93(2):1055-68. PubMed ID: 15456796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of interceptive actions is based on expectancy of time to target arrival.
    de Azevedo Neto RM; Teixeira LA
    Exp Brain Res; 2009 Nov; 199(2):135-43. PubMed ID: 19705111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hitting moving targets: a dissociation between the use of the target's speed and direction of motion.
    Brouwer AM; Middelburg T; Smeets JB; Brenner E
    Exp Brain Res; 2003 Oct; 152(3):368-75. PubMed ID: 12898090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The weight of time: gravitational force enhances discrimination of visual motion duration.
    Moscatelli A; Lacquaniti F
    J Vis; 2011 Apr; 11(4):. PubMed ID: 21478379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manual interception of moving targets. I. Performance and movement initiation.
    Port NL; Lee D; Dassonville P; Georgopoulos AP
    Exp Brain Res; 1997 Oct; 116(3):406-20. PubMed ID: 9372290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.