These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19882150)

  • 21. The time course of amplitude specification in brief interceptive actions.
    Marinovic W; Plooy A; Tresilian JR
    Exp Brain Res; 2008 Jun; 188(2):275-88. PubMed ID: 18415092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.
    Delle Monache S; Lacquaniti F; Bosco G
    Exp Brain Res; 2015 Feb; 233(2):359-74. PubMed ID: 25311389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. When up is down in 0g: how gravity sensing affects the timing of interceptive actions.
    Senot P; Zago M; Le Séac'h A; Zaoui M; Berthoz A; Lacquaniti F; McIntyre J
    J Neurosci; 2012 Feb; 32(6):1969-73. PubMed ID: 22323710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients.
    Maffei V; Mazzarella E; Piras F; Spalletta G; Caltagirone C; Lacquaniti F; Daprati E
    Cortex; 2016 May; 78():55-69. PubMed ID: 27007069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5+, and the intraparietal cortex.
    Delle Monache S; Lacquaniti F; Bosco G
    J Neurophysiol; 2017 Sep; 118(3):1809-1823. PubMed ID: 28701531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oculomotor prediction of accelerative target motion during occlusion: long-term and short-term effects.
    Bennett SJ; Orban de Xivry JJ; Lefèvre P; Barnes GR
    Exp Brain Res; 2010 Aug; 204(4):493-504. PubMed ID: 20556369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of sport expertise on representational momentum during timing control.
    Nakamoto H; Mori S; Ikudome S; Unenaka S; Imanaka K
    Atten Percept Psychophys; 2015 Apr; 77(3):961-71. PubMed ID: 25537739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lengthy suppression from similar stimuli during rapid serial visual presentation.
    Wong EM; Roeber U; Freeman AW
    J Vis; 2010 Jan; 10(1):14.1-12. PubMed ID: 20143907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of visual cues in gravity judgements on parabolic motion.
    Jörges B; Hagenfeld L; López-Moliner J
    Vision Res; 2018 Aug; 149():47-58. PubMed ID: 29913247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.
    Indovina I; Maffei V; Pauwels K; Macaluso E; Orban GA; Lacquaniti F
    Neuroimage; 2013 May; 71():114-24. PubMed ID: 23321153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smooth pursuit tracking of an abrupt change in target direction: vector superposition of discrete responses.
    Soechting JF; Mrotek LA; Flanders M
    Exp Brain Res; 2005 Jan; 160(2):245-58. PubMed ID: 15322786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perception of hand motion direction uses a gravitational reference.
    Darling WG; Viaene AN; Peterson CR; Schmiedeler JP
    Exp Brain Res; 2008 Mar; 186(2):237-48. PubMed ID: 18057924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial biases in motion extrapolation for manual interception.
    Reid SA; Dessing JC
    J Exp Psychol Hum Percept Perform; 2018 Jan; 44(1):38-52. PubMed ID: 28447848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do common systems control eye movements and motion extrapolation?
    Makin AD; Poliakoff E
    Q J Exp Psychol (Hove); 2011 Jul; 64(7):1327-43. PubMed ID: 21480079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intercepting accelerated moving targets: effects of practice on movement performance.
    Fialho JVAP; Tresilian JR
    Exp Brain Res; 2017 Apr; 235(4):1257-1268. PubMed ID: 28197673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Timing accuracy in motion extrapolation: reverse effects of target size and visible extent of motion at low and high speeds.
    Sokolov A; Pavlova M
    Perception; 2003; 32(6):699-706. PubMed ID: 12892430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prior information and oculomotor initiation: the effect of cues in gaps.
    Knox PC
    Exp Brain Res; 2009 Jan; 192(1):75-85. PubMed ID: 18762927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of gravitoinertial force level on the subjective vertical during recumbent yaw axis body tilt.
    Bryan AS; Bortolami SB; Ventura J; DiZio P; Lackner JR
    Exp Brain Res; 2007 Nov; 183(3):389-97. PubMed ID: 17703287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How moving backgrounds influence interception.
    Brenner E; Smeets JB
    PLoS One; 2015; 10(3):e0119903. PubMed ID: 25767873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.