These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19882309)

  • 1. Rapid increase in viability due to new beneficial mutations in Drosophila melanogaster.
    Azad P; Zhang M; Woodruff RC
    Genetica; 2010 Feb; 138(2):251-63. PubMed ID: 19882309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rate of mutation and the homozygous and heterozygous mutational effects for competitive viability: a long-term experiment with Drosophila melanogaster.
    Chavarrías D; López-Fanjul C; García-Dorado A
    Genetics; 2001 Jun; 158(2):681-93. PubMed ID: 11404332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitness effects of EMS-induced mutations on the X chromosome of Drosophila melanogaster. I. Viability effects and heterozygous fitness effects.
    Mitchell JA
    Genetics; 1977 Dec; 87(4):763-74. PubMed ID: 414960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of Drosophila melanogaster to increased NaCl concentration due to dominant beneficial mutations.
    Zhang M; Azad P; Woodruff RC
    Genetica; 2011 Feb; 139(2):177-86. PubMed ID: 21128095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of a long-term evolution experiment with Drosophila.
    Burke MK; Dunham JP; Shahrestani P; Thornton KR; Rose MR; Long AD
    Nature; 2010 Sep; 467(7315):587-90. PubMed ID: 20844486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster.
    García-Dorado A; Monedero JL; López-Fanjul C
    Genetica; 1998; 102-103(1-6):255-65. PubMed ID: 9720284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic structure of natural populations of Drosophila melanogaster. XX. Comparison of genotype-environment interaction in viability between a northern and a southern population.
    Takano T; Kusakabe S; Mukai T
    Genetics; 1987 Oct; 117(2):245-54. PubMed ID: 3117620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster.
    Mukai T; Chigusa SI; Mettler LE; Crow JF
    Genetics; 1972 Oct; 72(2):335-55. PubMed ID: 4630587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in viability due to the accumulation of X chromosome mutations in Drosophila melanogaster males.
    Woodruff RC; Balinski MA
    Genetica; 2018 Jun; 146(3):323-328. PubMed ID: 29744733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deleterious genomic mutation rate for viability in Drosophila melanogaster using concomitant sibling controls.
    Gong Y; Woodruff RC; Thompson JN
    Biol Lett; 2005 Dec; 1(4):492-5. PubMed ID: 17148241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations.
    Ohnishi O
    Genetics; 1977 Nov; 87(3):529-45. PubMed ID: 200526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits.
    Houle D; Hughes KA; Hoffmaster DK; Ihara J; Assimacopoulos S; Canada D; Charlesworth B
    Genetics; 1994 Nov; 138(3):773-85. PubMed ID: 7851773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster.
    Fry JD; Keightley PD; Heinsohn SL; Nuzhdin SV
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):574-9. PubMed ID: 9892675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for overdominant selection maintaining X-linked fitness variation in Drosophila melanogaster.
    Connallon T; Knowles LL
    Evolution; 2006 Jul; 60(7):1445-53. PubMed ID: 16929661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of deleterious mutations: additional Drosophila melanogaster estimates and a simulation of the effects of selection.
    Caballero A; Cusi E; García C; García-Dorado A
    Evolution; 2002 Jun; 56(6):1150-9. PubMed ID: 12144016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system.
    Kang L; Aggarwal DD; Rashkovetsky E; Korol AB; Michalak P
    BMC Genomics; 2016 Mar; 17():233. PubMed ID: 26979755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Modes of Positive Selection Shaping the Patterns of Incomplete Selective Sweeps over African Populations of Drosophila melanogaster.
    Vy HMT; Won YJ; Kim Y
    Mol Biol Evol; 2017 Nov; 34(11):2792-2807. PubMed ID: 28981697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parental age dependent changes as a source of genetic variation in Drosophila melanogaster.
    Marinković D; Bajraktari I
    Genetica; 1988 Sep; 77(2):113-21. PubMed ID: 3145904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations affecting fitness in Drosophila populations.
    Simmons MJ; Crow JF
    Annu Rev Genet; 1977; 11():49-78. PubMed ID: 413473
    [No Abstract]   [Full Text] [Related]  

  • 20. The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster.
    Koundakjian EJ; Cowan DM; Hardy RW; Becker AH
    Genetics; 2004 May; 167(1):203-6. PubMed ID: 15166147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.