These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19882309)

  • 21. Selection of viability at loci controlling protein polymorphisms in Drosophila melanogaster is very weak at most.
    Mukai T; Tachida H; Ichinose M
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4857-60. PubMed ID: 6776527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosomal polymorphism and patterns of viability in natural populations of Drosophila melanogaster from cellar and vineyard.
    Taberner A; González A
    Heredity (Edinb); 1991 Dec; 67 ( Pt 3)():307-16. PubMed ID: 1774189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster.
    Charlesworth B; Borthwick H; Bartolomé C; Pignatelli P
    Genetics; 2004 Jun; 167(2):815-26. PubMed ID: 15238530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females.
    Mallet MA; Bouchard JM; Kimber CM; Chippindale AK
    BMC Evol Biol; 2011 Jun; 11():156. PubMed ID: 21645375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The genetic structure of natural populations of Drosophila melanogaster. XI. Genetic variability in a local population.
    Mukai T; Yamaguchi O
    Genetics; 1974 Feb; 76(2):339-66. PubMed ID: 4207116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster.
    Avila V; Chavarrías D; Sánchez E; Manrique A; López-Fanjul C; García-Dorado A
    Genetics; 2006 May; 173(1):267-77. PubMed ID: 16547099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic polymorphism and high detrimental load in natural populations of Drosophila melanogaster from cellar and vineyard.
    González A; Ménsua JL
    Heredity (Edinb); 1987 Oct; 59 ( Pt 2)():227-36. PubMed ID: 3119525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide analysis of long-term evolutionary domestication in Drosophila melanogaster.
    Phillips MA; Long AD; Greenspan ZS; Greer LF; Burke MK; Villeponteau B; Matsagas KC; Rizza CL; Mueller LD; Rose MR
    Sci Rep; 2016 Dec; 6():39281. PubMed ID: 28004838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A synthetic combination of mutations, including fs(1)pyrSu(b), rSu(b) and b, causes female sterility and reduces embryonic viability in Drosophila melanogaster.
    Piskur J; Gojković Z; Bahn E
    Mol Gen Genet; 1999 Apr; 261(3):553-7. PubMed ID: 10323237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A measure of the within-chromosome synergistic epistasis for Drosophila viability.
    Rosa JM; Camacho S; García-Dorado A
    J Evol Biol; 2005 Jul; 18(4):1130-7. PubMed ID: 16033587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
    Shorter J; Couch C; Huang W; Carbone MA; Peiffer J; Anholt RR; Mackay TF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3555-63. PubMed ID: 26100892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The genomic mutation rate for fitness in Drosophila.
    Houle D; Hoffmaster DK; Assimacopoulos S; Charlesworth B
    Nature; 1992 Sep; 359(6390):58-60. PubMed ID: 1522887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The distribution of mutation effects on viability in Drosophila melanogaster.
    Keightley PD
    Genetics; 1994 Dec; 138(4):1315-22. PubMed ID: 7896110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fitness and its components in Drosophila melanogaster.
    Tanaka T; Yamazaki T
    Jpn J Genet; 1990 Dec; 65(6):417-26. PubMed ID: 2128455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster.
    Kondrashov AS; Houle D
    Proc Biol Sci; 1994 Dec; 258(1353):221-7. PubMed ID: 7886063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analyzing variation in egg-to-adult viability in experimental populations of Drosophila melanogaster.
    Wallace B
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2117-21. PubMed ID: 2494660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterozygous effects on fitness of EMS-treated chromosomes in Drosophila melanogaster.
    Simmons MJ; Sheldon EW; Crow JF
    Genetics; 1978 Mar; 88(3):575-90. PubMed ID: 205482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster.
    Latter BD; Mulley JC; Reid D; Pascoe L
    Genetics; 1995 Jan; 139(1):287-97. PubMed ID: 7705630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosome interactions in Drosophila melanogaster. II. Total fitness.
    Seager RD; Ayala FJ; Marks RW
    Genetics; 1982 Nov; 102(3):485-502. PubMed ID: 6816676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations.
    Gantz VM; Bier E
    Science; 2015 Apr; 348(6233):442-4. PubMed ID: 25908821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.