BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1988295)

  • 1. Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines.
    Pillai S; Bikle DD; Mancianti ML; Hincenbergs M
    Exp Cell Res; 1991 Feb; 192(2):567-73. PubMed ID: 1988295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3.
    Pillai S; Bikle DD
    J Cell Physiol; 1991 Jan; 146(1):94-100. PubMed ID: 1990023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squamous carcinoma cell lines fail to respond to 1,25-Dihydroxyvitamin D despite normal levels of the vitamin D receptor.
    Ratnam AV; Bikle DD; Su MJ; Pillai S
    J Invest Dermatol; 1996 Mar; 106(3):522-5. PubMed ID: 8648187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes.
    Pillai S; Bikle DD
    J Clin Invest; 1992 Jul; 90(1):42-51. PubMed ID: 1321844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidermal growth factor receptor expression related to differentiation capacity in normal and transformed keratinocytes.
    Boonstra J; De Laat SW; Ponec M
    Exp Cell Res; 1985 Dec; 161(2):421-33. PubMed ID: 2998836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium regulation of growth and differentiation of normal human keratinocytes: modulation of differentiation competence by stages of growth and extracellular calcium.
    Pillai S; Bikle DD; Mancianti ML; Cline P; Hincenbergs M
    J Cell Physiol; 1990 May; 143(2):294-302. PubMed ID: 1970572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of protein kinase C alpha in calcium induced keratinocyte differentiation: defective regulation in squamous cell carcinoma.
    Yang LC; Ng DC; Bikle DD
    J Cell Physiol; 2003 May; 195(2):249-59. PubMed ID: 12652652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of lipid synthesis in relation to keratinocyte differentiation capacity.
    Ponec M; Kempenaar J; Boonstra J
    Biochim Biophys Acta; 1987 Oct; 921(3):512-21. PubMed ID: 2444262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation.
    Pillai S; Bikle DD
    J Cell Physiol; 1992 Jun; 151(3):623-9. PubMed ID: 1363554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of the intracellular Ca(2+)-ATPase in cultured mouse keratinocytes reveal components of terminal differentiation that are regulated by distinct intracellular Ca2+ compartments.
    Li L; Tucker RW; Hennings H; Yuspa SH
    Cell Growth Differ; 1995 Sep; 6(9):1171-84. PubMed ID: 8519694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L; Tucker RW; Hennings H; Yuspa SH
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor.
    Bikle DD; Ratnam A; Mauro T; Harris J; Pillai S
    J Clin Invest; 1996 Feb; 97(4):1085-93. PubMed ID: 8613532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proliferation and differentiation of human squamous carcinoma cell lines and normal keratinocytes: effects of epidermal growth factor, retinoids, and hydrocortisone.
    Ponec M; Weerheim A; Kempenaar J; Boonstra J
    In Vitro Cell Dev Biol; 1988 Aug; 24(8):764-70. PubMed ID: 2457573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective low-density lipoprotein metabolism in cultured, normal, transformed, and malignant keratinocytes.
    Ponec M; Havekes L; Kempenaar J; Lavrijsen S; Vermeer BJ
    J Invest Dermatol; 1984 Dec; 83(6):436-40. PubMed ID: 6209343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of intracellular free calcium in normal murine keratinocytes.
    Kruszewski FH; Hennings H; Yuspa SH; Tucker RW
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C767-73. PubMed ID: 1951667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the regulation of intracellular calcium in normal and neoplastic keratinocytes are not caused by ras gene mutations.
    Kruszewski FH; Hennings H; Tucker RW; Yuspa SH
    Cancer Res; 1991 Aug; 51(16):4206-12. PubMed ID: 1907882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suspension-induced murine keratinocyte differentiation is mediated by calcium.
    Li L; Tennenbaum T; Yuspa SH
    J Invest Dermatol; 1996 Feb; 106(2):254-60. PubMed ID: 8601725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes.
    Hennings H; Kruszewski FH; Yuspa SH; Tucker RW
    Carcinogenesis; 1989 Apr; 10(4):777-80. PubMed ID: 2702726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization and quantitation of calcium pools and calcium binding sites in cultured human keratinocytes.
    Pillai S; Menon GK; Bikle DD; Elias PM
    J Cell Physiol; 1993 Jan; 154(1):101-12. PubMed ID: 8419397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linked envelope-related markers for squamous differentiation in human lung cancer cell lines.
    Levitt ML; Gazdar AF; Oie HK; Schuller H; Thacher SM
    Cancer Res; 1990 Jan; 50(1):120-8. PubMed ID: 1967140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.