These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19883054)

  • 1. Eigen energies and the statistical distributions of the rovibrational levels of the bosonic van der Waals argon trimer.
    Gagin A; Yarevsky E; Salci M; Elander N
    J Phys Chem A; 2009 Dec; 113(52):14979-86. PubMed ID: 19883054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study of the rovibrational levels of the bosonic van der Waals neon trimer.
    Salci M; Levin SB; Elander N; Yarevsky E
    J Chem Phys; 2008 Oct; 129(13):134304. PubMed ID: 19045087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New results for the OH (nu = 0,j = 0) + CO (nu = 0,j = 0) --> H + CO2 reaction: Five- and full-dimensional quantum dynamical study on several potential energy surfaces.
    Valero R; McCormack DA; Kroes GJ
    J Chem Phys; 2004 Mar; 120(9):4263-72. PubMed ID: 15268595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of argon trimer rovibrational spectrum.
    Karlický F; Lepetit B; Kalus R; Gadéa FX
    J Chem Phys; 2007 May; 126(17):174305. PubMed ID: 17492861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate calculations of bound rovibrational states for argon trimer.
    Brandon D; Poirier B
    J Chem Phys; 2014 Jul; 141(3):034302. PubMed ID: 25053315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new potential energy surface and predicted infrared spectra of the Ar-CO(2) van der Waals complex.
    Cui Y; Ran H; Xie D
    J Chem Phys; 2009 Jun; 130(22):224311. PubMed ID: 19530772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of Ne3 using hyperspherical coordinates and a slow variable discretization approach.
    Suno H
    J Chem Phys; 2011 Oct; 135(13):134312. PubMed ID: 21992310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity enhancement of ultracold O(3P)+H2 collisions by van der Waals interactions.
    Weck PF; Balakrishnan N
    J Chem Phys; 2005 Oct; 123(14):144308. PubMed ID: 16238392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Five-dimensional ab initio potential energy surface and predicted infrared spectra of H2-CO2 van der Waals complexes.
    Ran H; Zhou Y; Xie D
    J Chem Phys; 2007 May; 126(20):204304. PubMed ID: 17552759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recoil energy distributions for dissociation of the van der Waals molecule p-difluorobenzene-Ar with 450-3000 cm(-1) excess energy.
    Bellm SM; Lawrance WD
    J Chem Phys; 2005 Mar; 122(10):104305. PubMed ID: 15836313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A five-dimensional potential energy surface and predicted infrared spectra for the N2O-hydrogen complexes.
    Zhou Y; Ran H; Xie D
    J Chem Phys; 2006 Nov; 125(17):174310. PubMed ID: 17100442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential-energy surface, van der Waals energy spectrum, and vibronic transitions in s-tetrazine-argon complex.
    Makarewicz J
    J Chem Phys; 2006 Jan; 124(4):044310. PubMed ID: 16460165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jahn-Teller effect in van der Waals complexes; Ar-C6H6 + and Ar-C6D6 +.
    van der Avoird A; Lotrich VF
    J Chem Phys; 2004 Jun; 120(21):10069-83. PubMed ID: 15268029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential-energy surface and van der Waals motions of p-difluorobenzene-argon cation.
    Makarewicz J
    J Chem Phys; 2005 Jul; 123(4):044307. PubMed ID: 16095358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds.
    Zhao YH; Abraham MH; Zissimos AM
    J Org Chem; 2003 Sep; 68(19):7368-73. PubMed ID: 12968888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully quantum rovibrational calculation of the He(H2) bound and resonance states.
    Xiao Y; Poirier B
    J Phys Chem A; 2006 Apr; 110(16):5475-80. PubMed ID: 16623478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave and ab initio studies of rare gas-methane van der Waals complexes.
    Liu Y; Jäger W
    J Chem Phys; 2004 May; 120(19):9047-59. PubMed ID: 15267839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.
    Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X
    J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rotational spectrum and structure for the argon-cyclopentadienyl thallium van der Waals complex: experimental and computational studies of noncovalent bonding in an organometallic pi-complex.
    Tanjaroon C; Daly AM; Kukolich SG
    J Chem Phys; 2008 Aug; 129(5):054305. PubMed ID: 18698898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.