These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 19883076)
1. Kinetic analysis of cysteine desulfurase CD0387 from Synechocystis sp. PCC 6803: formation of the persulfide intermediate. Behshad E; Bollinger JM Biochemistry; 2009 Dec; 48(50):12014-23. PubMed ID: 19883076 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of cysteine desulfurase Slr0387 from Synechocystis sp. PCC 6803: kinetic analysis of cleavage of the persulfide intermediate by chemical reductants. Behshad E; Parkin SE; Bollinger JM Biochemistry; 2004 Sep; 43(38):12220-6. PubMed ID: 15379560 [TBL] [Abstract][Full Text] [Related]
3. The catalytic mechanism of kynureninase from Pseudomonas fluorescens: evidence for transient quinonoid and ketimine intermediates from rapid-scanning stopped-flow spectrophotometry. Phillips RS; Sundararaju B; Koushik SV Biochemistry; 1998 Jun; 37(24):8783-9. PubMed ID: 9628740 [TBL] [Abstract][Full Text] [Related]
4. Reaction of Pseudomonas fluorescens kynureninase with beta-benzoyl-L-alanine: detection of a new reaction intermediate and a change in rate-determining step. Gawandi VB; Liskey D; Lima S; Phillips RS Biochemistry; 2004 Mar; 43(11):3230-7. PubMed ID: 15023073 [TBL] [Abstract][Full Text] [Related]
5. Kinetic and structural characterization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803. Tirupati B; Vey JL; Drennan CL; Bollinger JM Biochemistry; 2004 Sep; 43(38):12210-9. PubMed ID: 15379559 [TBL] [Abstract][Full Text] [Related]
6. Kinetic analysis of the bisubstrate cysteine desulfurase SufS from Bacillus subtilis. Selbach B; Earles E; Dos Santos PC Biochemistry; 2010 Oct; 49(40):8794-802. PubMed ID: 20822158 [TBL] [Abstract][Full Text] [Related]
7. Insights into the mechanism of Pseudomonas dacunhae aspartate beta-decarboxylase from rapid-scanning stopped-flow kinetics. Phillips RS; Lima S; Khristoforov R; Sudararaju B Biochemistry; 2010 Jun; 49(24):5066-73. PubMed ID: 20469880 [TBL] [Abstract][Full Text] [Related]
8. Aminoacrylate intermediates in the reaction of Citrobacter freundii tyrosine phenol-lyase. Phillips RS; Chen HY; Faleev NG Biochemistry; 2006 Aug; 45(31):9575-83. PubMed ID: 16878992 [TBL] [Abstract][Full Text] [Related]
9. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
10. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914 [TBL] [Abstract][Full Text] [Related]
11. Substituent effects on the reaction of beta-benzoylalanines with Pseudomonas fluorescens kynureninase. Kumar S; Gawandi VB; Capito N; Phillips RS Biochemistry; 2010 Sep; 49(36):7913-9. PubMed ID: 20690660 [TBL] [Abstract][Full Text] [Related]
12. Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate. Tai CH; Yoon MY; Kim SK; Rege VD; Nalabolu SR; Kredich NM; Schnackerz KD; Cook PF Biochemistry; 1998 Jul; 37(30):10597-604. PubMed ID: 9692949 [TBL] [Abstract][Full Text] [Related]
13. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole. Cash MT; Miles EW; Phillips RS Arch Biochem Biophys; 2004 Dec; 432(2):233-43. PubMed ID: 15542062 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of temperature and hydrostatic pressure on the formation of quinonoid intermediates from L-Trp and L-Met by H463F mutant Escherichia coli tryptophan indole-lyase. Phillips RS; Holtermann G Biochemistry; 2005 Nov; 44(43):14289-97. PubMed ID: 16245945 [TBL] [Abstract][Full Text] [Related]
15. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Dominici P; Moore PS; Castellani S; Bertoldi M; Voltattorni CB Protein Sci; 1997 Sep; 6(9):2007-15. PubMed ID: 9300500 [TBL] [Abstract][Full Text] [Related]
16. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Rege VD; Kredich NM; Tai CH; Karsten WE; Schnackerz KD; Cook PF Biochemistry; 1996 Oct; 35(41):13485-93. PubMed ID: 8873618 [TBL] [Abstract][Full Text] [Related]
17. Effects of alpha-deuteration and of aza and thia analogs of L-tryptophan on formation of intermediates in the reaction of Escherichia coli tryptophan indole-lyase. Sloan MJ; Phillips RS Biochemistry; 1996 Dec; 35(50):16165-73. PubMed ID: 8973188 [TBL] [Abstract][Full Text] [Related]
18. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
19. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
20. L-cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate, ammonia, and sulfide. Tchong SI; Xu H; White RH Biochemistry; 2005 Feb; 44(5):1659-70. PubMed ID: 15683250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]