These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19883118)

  • 21. Evolution of enzymatic activities in the enolase superfamily: stereochemically distinct mechanisms in two families of cis,cis-muconate lactonizing enzymes.
    Sakai A; Fedorov AA; Fedorov EV; Schnoes AM; Glasner ME; Brown S; Rutter ME; Bain K; Chang S; Gheyi T; Sauder JM; Burley SK; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2009 Feb; 48(7):1445-53. PubMed ID: 19220063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of enzymatic activity in the enolase superfamily: structural and mutagenic studies of the mechanism of the reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli.
    Klenchin VA; Taylor Ringia EA; Gerlt JA; Rayment I
    Biochemistry; 2003 Dec; 42(49):14427-33. PubMed ID: 14661953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interrogating l-fuconate dehydratase with tartronate and 3-hydroxypyruvate reveals subtle differences within the mandelate racemase-subgroup of the enolase superfamily.
    McGary LC; Fetter CM; Gu M; Hamilton MC; Kumar H; Kuehm OP; Douglas CD; Bearne SL
    Arch Biochem Biophys; 2024 Apr; 754():109924. PubMed ID: 38354877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily.
    Schmidt DM; Mundorff EC; Dojka M; Bermudez E; Ness JE; Govindarajan S; Babbitt PC; Minshull J; Gerlt JA
    Biochemistry; 2003 Jul; 42(28):8387-93. PubMed ID: 12859183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering the enolase magnesium II binding site: implications for its evolution.
    Schreier B; Höcker B
    Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling the importance of the C-terminus in the sugar acid dehydratase of the IlvD/EDD superfamily.
    Ren Y; Vettenranta E; Penttinen L; Blomster Andberg M; Koivula A; Rouvinen J; Hakulinen N
    Appl Microbiol Biotechnol; 2024 Aug; 108(1):436. PubMed ID: 39126499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily.
    Wichelecki DJ; Graff DC; Al-Obaidi N; Almo SC; Gerlt JA
    Biochemistry; 2014 Jul; 53(25):4087-9. PubMed ID: 24947666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases.
    Schmidt DM; Hubbard BK; Gerlt JA
    Biochemistry; 2001 Dec; 40(51):15707-15. PubMed ID: 11747447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structural determination of phosphosulfolactate synthase from Methanococcus jannaschii at 1.7-A resolution: an enolase that is not an enolase.
    Wise EL; Graham DE; White RH; Rayment I
    J Biol Chem; 2003 Nov; 278(46):45858-63. PubMed ID: 12952952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure of 3-methylaspartase from Clostridium tetanomorphum functions via the common enolase chemical step.
    Asuncion M; Blankenfeldt W; Barlow JN; Gani D; Naismith JH
    J Biol Chem; 2002 Mar; 277(10):8306-11. PubMed ID: 11748244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids.
    Sakai A; Xiang DF; Xu C; Song L; Yew WS; Raushel FM; Gerlt JA
    Biochemistry; 2006 Apr; 45(14):4455-62. PubMed ID: 16584181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies.
    Pieper U; Chiang R; Seffernick JJ; Brown SD; Glasner ME; Kelly L; Eswar N; Sauder JM; Bonanno JB; Swaminathan S; Burley SK; Zheng X; Chance MR; Almo SC; Gerlt JA; Raushel FM; Jacobson MP; Babbitt PC; Sali A
    J Struct Funct Genomics; 2009 Apr; 10(2):107-25. PubMed ID: 19219566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis.
    Taylor Ringia EA; Garrett JB; Thoden JB; Holden HM; Rayment I; Gerlt JA
    Biochemistry; 2004 Jan; 43(1):224-9. PubMed ID: 14705949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary potential of (beta/alpha)8-barrels: in vitro enhancement of a "new" reaction in the enolase superfamily.
    Vick JE; Schmidt DM; Gerlt JA
    Biochemistry; 2005 Sep; 44(35):11722-9. PubMed ID: 16128573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate.
    Thompson TB; Garrett JB; Taylor EA; Meganathan R; Gerlt JA; Rayment I
    Biochemistry; 2000 Sep; 39(35):10662-76. PubMed ID: 10978150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity.
    Gerlt JA; Babbitt PC; Rayment I
    Arch Biochem Biophys; 2005 Jan; 433(1):59-70. PubMed ID: 15581566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unique cis-3-hydroxy-l-proline dehydratase in the enolase superfamily.
    Zhang X; Kumar R; Vetting MW; Zhao S; Jacobson MP; Almo SC; Gerlt JA
    J Am Chem Soc; 2015 Feb; 137(4):1388-91. PubMed ID: 25608448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.