BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19883396)

  • 1. Different mechanisms of recognition and ER retention by transmembrane transcription factors CREB-H and ATF6.
    Llarena M; Bailey D; Curtis H; O'Hare P
    Traffic; 2010 Jan; 11(1):48-69. PubMed ID: 19883396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P.
    Stirling J; O'hare P
    Mol Biol Cell; 2006 Jan; 17(1):413-26. PubMed ID: 16236796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis.
    Bailey D; Barreca C; O'Hare P
    Traffic; 2007 Dec; 8(12):1796-1814. PubMed ID: 17875199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of ATF6 activation in Site-2 protease-deficient Chinese hamster ovary cells.
    Nadanaka S; Yoshida H; Sato R; Mori K
    Cell Struct Funct; 2006; 31(2):109-16. PubMed ID: 17110786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6.
    Okada T; Haze K; Nadanaka S; Yoshida H; Seidah NG; Hirano Y; Sato R; Negishi M; Mori K
    J Biol Chem; 2003 Aug; 278(33):31024-32. PubMed ID: 12782636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GSK-3-mediated phosphorylation couples ER-Golgi transport and nuclear stabilization of the CREB-H transcription factor to mediate apolipoprotein secretion.
    Barbosa S; Carreira S; O'Hare P
    Mol Biol Cell; 2017 Jun; 28(11):1565-1579. PubMed ID: 28381424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H.
    Chan CP; Mak TY; Chin KT; Ng IO; Jin DY
    J Cell Sci; 2010 May; 123(Pt 9):1438-48. PubMed ID: 20356926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress.
    Nadanaka S; Okada T; Yoshida H; Mori K
    Mol Cell Biol; 2007 Feb; 27(3):1027-43. PubMed ID: 17101776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of disulfide bridges in the lumenal domain of ATF6 in response to glucose starvation.
    Nadanaka S; Yoshida H; Mori K
    Cell Struct Funct; 2006; 31(2):127-34. PubMed ID: 17130669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminal domain of ATF6 alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus.
    Sato Y; Nadanaka S; Okada T; Okawa K; Mori K
    Cell Struct Funct; 2011; 36(1):35-47. PubMed ID: 21150130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.
    Shen J; Chen X; Hendershot L; Prywes R
    Dev Cell; 2002 Jul; 3(1):99-111. PubMed ID: 12110171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitotic regulation of SREBP and ATF6 by separation of the Golgi and ER.
    Bartz R; Seemann J
    Cell Cycle; 2008 Jul; 7(14):2100-5. PubMed ID: 18635952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The non-canonical mechanism of ER stress-mediated progression of prostate cancer.
    Pachikov AN; Gough RR; Christy CE; Morris ME; Casey CA; LaGrange CA; Bhat G; Kubyshkin AV; Fomochkina II; Zyablitskaya EY; Makalish TP; Golubinskaya EP; Davydenko KA; Eremenko SN; Riethoven JM; Maroli AS; Payne TS; Powers R; Lushnikov AY; Macke AJ; Petrosyan A
    J Exp Clin Cancer Res; 2021 Sep; 40(1):289. PubMed ID: 34521429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6.
    Shen J; Prywes R
    J Biol Chem; 2004 Oct; 279(41):43046-51. PubMed ID: 15299016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB.
    Seo HY; Kim MK; Min AK; Kim HS; Ryu SY; Kim NK; Lee KM; Kim HJ; Choi HS; Lee KU; Park KG; Lee IK
    Endocrinology; 2010 Feb; 151(2):561-8. PubMed ID: 20022930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.
    Ye J; Rawson RB; Komuro R; Chen X; Davé UP; Prywes R; Brown MS; Goldstein JL
    Mol Cell; 2000 Dec; 6(6):1355-64. PubMed ID: 11163209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi.
    Chen X; Shen J; Prywes R
    J Biol Chem; 2002 Apr; 277(15):13045-52. PubMed ID: 11821395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation).
    Ye J
    J Biol Chem; 2020 Jul; 295(30):10271-10280. PubMed ID: 32487748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nelfinavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding protein-1 and activating transcription factor 6 in castration-resistant prostate cancer.
    Guan M; Fousek K; Chow WA
    FEBS J; 2012 Jul; 279(13):2399-411. PubMed ID: 22540830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress.
    Murakami T; Kondo S; Ogata M; Kanemoto S; Saito A; Wanaka A; Imaizumi K
    J Neurochem; 2006 Feb; 96(4):1090-100. PubMed ID: 16417584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.