BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 19883397)

  • 1. Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis.
    Bruns AF; Herbert SP; Odell AF; Jopling HM; Hooper NM; Zachary IC; Walker JH; Ponnambalam S
    Traffic; 2010 Jan; 11(1):161-74. PubMed ID: 19883397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis.
    Bruns AF; Bao L; Walker JH; Ponnambalam S
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1193-7. PubMed ID: 19909245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells.
    Ewan LC; Jopling HM; Jia H; Mittar S; Bagherzadeh A; Howell GJ; Walker JH; Zachary IC; Ponnambalam S
    Traffic; 2006 Sep; 7(9):1270-82. PubMed ID: 17004325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2.
    Zhang Z; Neiva KG; Lingen MW; Ellis LM; Nör JE
    Cell Death Differ; 2010 Mar; 17(3):499-512. PubMed ID: 19834490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEGFR2 Trafficking, Signaling and Proteolysis is Regulated by the Ubiquitin Isopeptidase USP8.
    Smith GA; Fearnley GW; Abdul-Zani I; Wheatcroft SB; Tomlinson DC; Harrison MA; Ponnambalam S
    Traffic; 2016 Jan; 17(1):53-65. PubMed ID: 26459808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A heat-shock protein axis regulates VEGFR2 proteolysis, blood vessel development and repair.
    Bruns AF; Yuldasheva N; Latham AM; Bao L; Pellet-Many C; Frankel P; Stephen SL; Howell GJ; Wheatcroft SB; Kearney MT; Zachary IC; Ponnambalam S
    PLoS One; 2012; 7(11):e48539. PubMed ID: 23139789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGD5 Regulates VEGF Receptor-2 Coupling to PI3 Kinase and Receptor Recycling.
    Farhan MA; Azad AK; Touret N; Murray AG
    Arterioscler Thromb Vasc Biol; 2017 Dec; 37(12):2301-2310. PubMed ID: 29051140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibition of vascular endothelial growth factor receptor-2 (VEGFR-2) identifies a central role for VEGFR-2 in human aortic endothelial cell responses to VEGF.
    Endo A; Fukuhara S; Masuda M; Ohmori T; Mochizuki N
    J Recept Signal Transduct Res; 2003; 23(2-3):239-54. PubMed ID: 14626450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells.
    Tae N; Lee S; Kim O; Park J; Na S; Lee JH
    Oncotarget; 2017 Jun; 8(24):38886-38901. PubMed ID: 28418925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of the receptor binding profiles of the vascular endothelial growth factors on their angiogenic features.
    Nieminen T; Toivanen PI; Rintanen N; Heikura T; Jauhiainen S; Airenne KJ; Alitalo K; Marjomäki V; Ylä-Herttuala S
    Biochim Biophys Acta; 2014 Jan; 1840(1):454-63. PubMed ID: 24112971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial SCUBE2 Interacts With VEGFR2 and Regulates VEGF-Induced Angiogenesis.
    Lin YC; Chao TY; Yeh CT; Roffler SR; Kannagi R; Yang RB
    Arterioscler Thromb Vasc Biol; 2017 Jan; 37(1):144-155. PubMed ID: 27834687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioredoxin-interacting protein mediates sustained VEGFR2 signaling in endothelial cells required for angiogenesis.
    Park SY; Shi X; Pang J; Yan C; Berk BC
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):737-43. PubMed ID: 23393387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGD5 sustains vascular endothelial growth factor A (VEGFA) signaling through inhibition of proteasome-mediated VEGF receptor 2 degradation.
    Heldin J; O'Callaghan P; Hernández Vera R; Fuchs PF; Gerwins P; Kreuger J
    Cell Signal; 2017 Dec; 40():125-132. PubMed ID: 28927665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium.
    Dellinger MT; Brekken RA
    PLoS One; 2011; 6(12):e28947. PubMed ID: 22174934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular controls of lymphatic VEGFR3 signaling.
    Deng Y; Zhang X; Simons M
    Arterioscler Thromb Vasc Biol; 2015 Feb; 35(2):421-9. PubMed ID: 25524775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase.
    Jin ZG; Ueba H; Tanimoto T; Lungu AO; Frame MD; Berk BC
    Circ Res; 2003 Aug; 93(4):354-63. PubMed ID: 12893742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis.
    Ikeda S; Ushio-Fukai M; Zuo L; Tojo T; Dikalov S; Patrushev NA; Alexander RW
    Circ Res; 2005 Mar; 96(4):467-75. PubMed ID: 15692085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.
    Zhang Y; Li Q; Youn JY; Cai H
    J Biol Chem; 2017 Jan; 292(2):407-416. PubMed ID: 27872190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VEGF-functionalized dextran has longer intracellular bioactivity than VEGF in endothelial cells.
    Maia J; Vazão H; Pedroso DC; Jesus CS; Brito RM; Grãos M; Gil MH; Ferreira L
    Biomacromolecules; 2012 Sep; 13(9):2906-16. PubMed ID: 22901277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling.
    Balaji Ragunathrao VA; Anwar M; Akhter MZ; Chavez A; Mao Y; Natarajan V; Lakshmikanthan S; Chrzanowska-Wodnicka M; Dudek AZ; Claesson-Welsh L; Kitajewski JK; Wary KK; Malik AB; Mehta D
    Cell Rep; 2019 Dec; 29(11):3472-3487.e4. PubMed ID: 31825830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.