These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 19883596)
1. Solution and crystal molecular dynamics simulation study of m4-cyanovirin-N mutants complexed with di-mannose. Vorontsov II; Miyashita O Biophys J; 2009 Nov; 97(9):2532-40. PubMed ID: 19883596 [TBL] [Abstract][Full Text] [Related]
2. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N. Vorontsov II; Miyashita O J Comput Chem; 2011 Apr; 32(6):1043-53. PubMed ID: 20949512 [TBL] [Abstract][Full Text] [Related]
3. Computational study of the dynamics of mannose disaccharides free in solution and bound to the potent anti-HIV virucidal protein cyanovirin. Margulis CJ J Phys Chem B; 2005 Mar; 109(8):3639-47. PubMed ID: 16851402 [TBL] [Abstract][Full Text] [Related]
4. Potent inhibition of HIV-1 fusion by cyanovirin-N requires only a single high affinity carbohydrate binding site: characterization of low affinity carbohydrate binding site knockout mutants. Chang LC; Bewley CA J Mol Biol; 2002 Apr; 318(1):1-8. PubMed ID: 12054763 [TBL] [Abstract][Full Text] [Related]
5. The potent anti-HIV protein cyanovirin-N contains two novel carbohydrate binding sites that selectively bind to Man(8) D1D3 and Man(9) with nanomolar affinity: implications for binding to the HIV envelope protein gp120. Bewley CA; Otero-Quintero S J Am Chem Soc; 2001 May; 123(17):3892-902. PubMed ID: 11457139 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of a cyanovirin-N:Man alpha 1-2Man alpha complex: structural basis for high-affinity carbohydrate-mediated binding to gp120. Bewley CA Structure; 2001 Oct; 9(10):931-40. PubMed ID: 11591348 [TBL] [Abstract][Full Text] [Related]
7. The role of Glu41 in the binding of dimannose to P51G-m4-CVN. Ramadugu SK; Li Z; Kashyap HK; Margulis CJ Biochemistry; 2014 Mar; 53(9):1477-84. PubMed ID: 24524298 [TBL] [Abstract][Full Text] [Related]
8. A monovalent mutant of cyanovirin-N provides insight into the role of multiple interactions with gp120 for antiviral activity. Fromme R; Katiliene Z; Giomarelli B; Bogani F; Mc Mahon J; Mori T; Fromme P; Ghirlanda G Biochemistry; 2007 Aug; 46(32):9199-207. PubMed ID: 17636873 [TBL] [Abstract][Full Text] [Related]
9. Multivalent interactions with gp120 are required for the anti-HIV activity of Cyanovirin. Liu Y; Carroll JR; Holt LA; McMahon J; Giomarelli B; Ghirlanda G Biopolymers; 2009; 92(3):194-200. PubMed ID: 19235857 [TBL] [Abstract][Full Text] [Related]
10. A flexible docking scheme efficiently captures the energetics of glycan-cyanovirin binding. Bolia A; Woodrum BW; Cereda A; Ruben MA; Wang X; Ozkan SB; Ghirlanda G Biophys J; 2014 Mar; 106(5):1142-51. PubMed ID: 24606938 [TBL] [Abstract][Full Text] [Related]
11. Conformational gating of dimannose binding to the antiviral protein cyanovirin revealed from the crystal structure at 1.35 A resolution. Fromme R; Katiliene Z; Fromme P; Ghirlanda G Protein Sci; 2008 May; 17(5):939-44. PubMed ID: 18436959 [TBL] [Abstract][Full Text] [Related]
12. Solution and crystal structures of a sugar binding site mutant of cyanovirin-N: no evidence of domain swapping. Matei E; Furey W; Gronenborn AM Structure; 2008 Aug; 16(8):1183-94. PubMed ID: 18682220 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the monovalent lectin microvirin in complex with Man(alpha)(1-2)Man provides a basis for anti-HIV activity with low toxicity. Shahzad-ul-Hussan S; Gustchina E; Ghirlando R; Clore GM; Bewley CA J Biol Chem; 2011 Jun; 286(23):20788-96. PubMed ID: 21471192 [TBL] [Abstract][Full Text] [Related]
14. Site-specific discrimination by cyanovirin-N for alpha-linked trisaccharides comprising the three arms of Man(8) and Man(9). Bewley CA; Kiyonaka S; Hamachi I J Mol Biol; 2002 Sep; 322(4):881-9. PubMed ID: 12270721 [TBL] [Abstract][Full Text] [Related]
15. Computational models explain the oligosaccharide specificity of cyanovirin-N. Fujimoto YK; Terbush RN; Patsalo V; Green DF Protein Sci; 2008 Nov; 17(11):2008-14. PubMed ID: 18809850 [TBL] [Abstract][Full Text] [Related]
16. Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition. Barrientos LG; Matei E; Lasala F; Delgado R; Gronenborn AM Protein Eng Des Sel; 2006 Dec; 19(12):525-35. PubMed ID: 17012344 [TBL] [Abstract][Full Text] [Related]
17. Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. Botos I; O'Keefe BR; Shenoy SR; Cartner LK; Ratner DM; Seeberger PH; Boyd MR; Wlodawer A J Biol Chem; 2002 Sep; 277(37):34336-42. PubMed ID: 12110688 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside. Williams DC; Lee JY; Cai M; Bewley CA; Clore GM J Biol Chem; 2005 Aug; 280(32):29269-76. PubMed ID: 15937331 [TBL] [Abstract][Full Text] [Related]
19. Solution structure of a circular-permuted variant of the potent HIV-inactivating protein cyanovirin-N: structural basis for protein stability and oligosaccharide interaction. Barrientos LG; Louis JM; Ratner DM; Seeberger PH; Gronenborn AM J Mol Biol; 2003 Jan; 325(1):211-23. PubMed ID: 12473463 [TBL] [Abstract][Full Text] [Related]
20. Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Patsalo V; Raleigh DP; Green DF Biochemistry; 2011 Dec; 50(49):10698-712. PubMed ID: 22032696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]