These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 19883605)
1. Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Bader AN; Hofman EG; Voortman J; en Henegouwen PM; Gerritsen HC Biophys J; 2009 Nov; 97(9):2613-22. PubMed ID: 19883605 [TBL] [Abstract][Full Text] [Related]
2. Analysis of EGF receptor oligomerization by homo-FRET. de Heus C; Kagie N; Heukers R; van Bergen en Henegouwen PM; Gerritsen HC Methods Cell Biol; 2013; 117():305-21. PubMed ID: 24143984 [TBL] [Abstract][Full Text] [Related]
3. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. Squire A; Verveer PJ; Rocks O; Bastiaens PI J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. Tramier M; Coppey-Moisan M Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472 [TBL] [Abstract][Full Text] [Related]
5. Homo-FRET imaging as a tool to quantify protein and lipid clustering. Bader AN; Hoetzl S; Hofman EG; Voortman J; van Bergen en Henegouwen PM; van Meer G; Gerritsen HC Chemphyschem; 2011 Feb; 12(3):475-83. PubMed ID: 21344588 [TBL] [Abstract][Full Text] [Related]
6. Ligand-induced EGF receptor oligomerization is kinase-dependent and enhances internalization. Hofman EG; Bader AN; Voortman J; van den Heuvel DJ; Sigismund S; Verkleij AJ; Gerritsen HC; van Bergen en Henegouwen PM J Biol Chem; 2010 Dec; 285(50):39481-9. PubMed ID: 20940297 [TBL] [Abstract][Full Text] [Related]
7. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. Clayton AH; Walker F; Orchard SG; Henderson C; Fuchs D; Rothacker J; Nice EC; Burgess AW J Biol Chem; 2005 Aug; 280(34):30392-9. PubMed ID: 15994331 [TBL] [Abstract][Full Text] [Related]
8. The role of photon statistics in fluorescence anisotropy imaging. Lidke KA; Rieger B; Lidke DS; Jovin TM IEEE Trans Image Process; 2005 Sep; 14(9):1237-45. PubMed ID: 16190460 [TBL] [Abstract][Full Text] [Related]
9. Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy. Ghosh S; Saha S; Goswami D; Bilgrami S; Mayor S Methods Enzymol; 2012; 505():291-327. PubMed ID: 22289460 [TBL] [Abstract][Full Text] [Related]
10. Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Yeow EK; Clayton AH Biophys J; 2007 May; 92(9):3098-104. PubMed ID: 17416632 [TBL] [Abstract][Full Text] [Related]
11. Optical methods in the study of protein-protein interactions. Masi A; Cicchi R; Carloni A; Pavone FS; Arcangeli A Adv Exp Med Biol; 2010; 674():33-42. PubMed ID: 20549938 [TBL] [Abstract][Full Text] [Related]
12. Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer. Teijeiro-Gonzalez Y; Crnjar A; Beavil AJ; Beavil RL; Nedbal J; Le Marois A; Molteni C; Suhling K Biophys J; 2021 Jan; 120(2):254-269. PubMed ID: 33345902 [TBL] [Abstract][Full Text] [Related]
13. HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. Chan FT; Kaminski CF; Kaminski Schierle GS Chemphyschem; 2011 Feb; 12(3):500-9. PubMed ID: 21344590 [TBL] [Abstract][Full Text] [Related]
14. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface. Bene L; Gralle M; Damjanovich L Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190 [TBL] [Abstract][Full Text] [Related]
15. Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy. Bader AN; Hofman EG; van Bergen En Henegouwen PM; Gerritsen HC Opt Express; 2007 May; 15(11):6934-45. PubMed ID: 19547008 [TBL] [Abstract][Full Text] [Related]
16. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Gautier I; Tramier M; Durieux C; Coppey J; Pansu RB; Nicolas JC; Kemnitz K; Coppey-Moisan M Biophys J; 2001 Jun; 80(6):3000-8. PubMed ID: 11371472 [TBL] [Abstract][Full Text] [Related]
18. Engineering FRET constructs using CFP and YFP. Shimozono S; Miyawaki A Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
20. Homo-FRET Imaging to Study Protein-Protein Interaction and Complex Formation in Plants. Weidtkamp-Peters S; Rehwald S; Stahl Y Methods Mol Biol; 2022; 2379():197-208. PubMed ID: 35188664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]