These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 19883660)

  • 41. phi 29 DNA polymerase residue Leu384, highly conserved in motif B of eukaryotic type DNA replicases, is involved in nucleotide insertion fidelity.
    Truniger V; Lázaro JM; de Vega M; Blanco L; Salas M
    J Biol Chem; 2003 Aug; 278(35):33482-91. PubMed ID: 12805385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.
    Castrec B; Laurent S; Henneke G; Flament D; Raffin JP
    J Mol Biol; 2010 Mar; 396(4):840-8. PubMed ID: 20070946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication.
    Del Prado A; Lázaro JM; Longás E; Villar L; de Vega M; Salas M
    J Biol Chem; 2015 Nov; 290(45):27138-27145. PubMed ID: 26400085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of phage phi29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication.
    Pérez-Arnaiz P; Longás E; Villar L; Lázaro JM; Salas M; de Vega M
    Nucleic Acids Res; 2007; 35(21):7061-73. PubMed ID: 17913744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Duality of polynucleotide substrates for Phi29 DNA polymerase: 3'-->5' RNase activity of the enzyme.
    Lagunavicius A; Kiveryte Z; Zimbaite-Ruskuliene V; Radzvilavicius T; Janulaitis A
    RNA; 2008 Mar; 14(3):503-13. PubMed ID: 18230765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    J Biol Chem; 2014 Mar; 289(10):6350-6361. PubMed ID: 24464581
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein-Primed Replication of Bacteriophage Φ29 DNA.
    Salas M; de Vega M
    Enzymes; 2016; 39():137-67. PubMed ID: 27241929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication.
    Holguera I; Muñoz-Espín D; Salas M
    Nucleic Acids Res; 2015 Mar; 43(5):2790-801. PubMed ID: 25722367
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and functional studies on phi 29 DNA polymerase.
    Blasco MA; Esteban JA; Méndez J; Blanco L; Salas M
    Chromosoma; 1992; 102(1 Suppl):S32-8. PubMed ID: 1291240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phi 29 DNA polymerase active site. Mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding.
    Blasco MA; Lázaro JM; Bernad A; Blanco L; Salas M
    J Biol Chem; 1992 Sep; 267(27):19427-34. PubMed ID: 1527062
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.
    Tubeleviciute A; Skirgaila R
    Protein Eng Des Sel; 2010 Aug; 23(8):589-97. PubMed ID: 20513707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29.
    Kamtekar S; Berman AJ; Wang J; Lázaro JM; de Vega M; Blanco L; Salas M; Steitz TA
    Mol Cell; 2004 Nov; 16(4):609-18. PubMed ID: 15546620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Function of the C-terminus of phi29 DNA polymerase in DNA and terminal protein binding.
    Truniger V; Lázaro JM; Salas M
    Nucleic Acids Res; 2004; 32(1):361-70. PubMed ID: 14729920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of helix P of the human cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug foscarnet.
    Tchesnokov EP; Gilbert C; Boivin G; Götte M
    J Virol; 2006 Feb; 80(3):1440-50. PubMed ID: 16415021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions.
    Holguera I; Redrejo-Rodríguez M; Salas M; Muñoz-Espín D
    Mol Microbiol; 2014 Jan; 91(2):232-41. PubMed ID: 24205926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli.
    Seo KY; Yin J; Donthamsetti P; Chandani S; Lee CH; Loechler EL
    J Mol Biol; 2009 Sep; 392(2):270-82. PubMed ID: 19607844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase.
    Mendez J; Blanco L; Salas M
    EMBO J; 1997 May; 16(9):2519-27. PubMed ID: 9171364
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases.
    Zatopek KM; Alpaslan E; Evans TC; Sauguet L; Gardner AF
    Nucleic Acids Res; 2020 Dec; 48(21):12204-12218. PubMed ID: 33137176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The RGD sequence in phage phi29 terminal protein is required for interaction with phi29 DNA polymerase.
    Illana B; Zaballos A; Blanco L; Salas M
    Virology; 1998 Aug; 248(1):12-9. PubMed ID: 9705251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.