BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19883686)

  • 1. The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking.
    Hirrlinger J; Dringen R
    Brain Res Rev; 2010 May; 63(1-2):177-88. PubMed ID: 19883686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NAD+ /NADH redox state in astrocytes: independent control of the NAD+ and NADH content.
    Wilhelm F; Hirrlinger J
    J Neurosci Res; 2011 Dec; 89(12):1956-64. PubMed ID: 21488092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U
    Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Responses to Reductive Stress.
    Xiao W; Loscalzo J
    Antioxid Redox Signal; 2020 Jun; 32(18):1330-1347. PubMed ID: 31218894
    [No Abstract]   [Full Text] [Related]  

  • 10. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
    Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R
    Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glial metabolism studied by 13C-NMR.
    Zwingmann C; Leibfritz D
    NMR Biomed; 2003; 16(6-7):370-99. PubMed ID: 14679501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes.
    Hirrlinger J; Dringen R
    Methods Enzymol; 2005; 400():395-409. PubMed ID: 16399362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
    Mongeon R; Venkatachalam V; Yellen G
    Antioxid Redox Signal; 2016 Oct; 25(10):553-63. PubMed ID: 26857245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.
    Cheng Z; Arscott LD; Ballou DP; Williams CH
    Biochemistry; 2007 Jul; 46(26):7875-85. PubMed ID: 17550271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Main Cellular Redox Couples].
    Bilan DS; Shokhina AG; Lukyanov SA; Belousov VV
    Bioorg Khim; 2015; 41(4):385-402. PubMed ID: 26615634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione pathways in the brain.
    Dringen R; Hirrlinger J
    Biol Chem; 2003 Apr; 384(4):505-16. PubMed ID: 12751781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.
    Nkabyo YS; Ziegler TR; Gu LH; Watson WH; Jones DP
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1352-9. PubMed ID: 12433666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type-2 astrocytes have much greater susceptibility to heat stress than type-1 astrocytes.
    Juurlink BH
    J Neurosci Res; 1994 Jun; 38(2):196-201. PubMed ID: 8078104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insight into the regulation of GSH biosynthesis in higher plants.
    Rausch T; Gromes R; Liedschulte V; Müller I; Bogs J; Galovic V; Wachter A
    Plant Biol (Stuttg); 2007 Sep; 9(5):565-72. PubMed ID: 17853356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.