These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19883934)

  • 1. Field observations of the persistence of Comp B explosives residues in a salt marsh impact area.
    Walsh ME; Taylor S; Hewitt AD; Walsh MR; Ramsey CA; Collins CM
    Chemosphere; 2010 Jan; 78(4):467-73. PubMed ID: 19883934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution kinetics of high explosives particles in a saturated sandy soil.
    Morley MC; Yamamoto H; Speitel GE; Clausen J
    J Contam Hydrol; 2006 May; 85(3-4):141-58. PubMed ID: 16530292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outdoor weathering and dissolution of TNT and Tritonal.
    Taylor S; Lever JH; Fadden J; Perron N; Packer B
    Chemosphere; 2009 Nov; 77(10):1338-45. PubMed ID: 19846196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated rainfall-driven dissolution of TNT, Tritonal, Comp B and Octol particles.
    Taylor S; Lever JH; Fadden J; Perron N; Packer B
    Chemosphere; 2009 May; 75(8):1074-81. PubMed ID: 19215963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of Composition B particles from blow-in-place detonations.
    Taylor S; Campbell E; Perovich L; Lever J; Pennington J
    Chemosphere; 2006 Nov; 65(8):1405-13. PubMed ID: 16750241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective elution of RDX and TNT from particles of Comp B in surface soil.
    Furey JS; Fredrickson HL; Richmond MJ; Michel M
    Chemosphere; 2008 Jan; 70(7):1175-81. PubMed ID: 17910970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TNT particle size distributions from detonated 155-mm howitzer rounds.
    Taylor S; Hewitt A; Lever J; Hayes C; Perovich L; Thorne P; Daghlian C
    Chemosphere; 2004 Apr; 55(3):357-67. PubMed ID: 14987934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.
    Fuller ME; Schaefer CE; Steffan RJ
    Chemosphere; 2009 Nov; 77(8):1076-83. PubMed ID: 19765798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution and transport of TNT, RDX, and composition B in saturated soil columns.
    Dontsova KM; Yost SL; Simunek J; Pennington JC; Williford CW
    J Environ Qual; 2006; 35(6):2043-54. PubMed ID: 17071873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle size and particle wetting.
    Fuller ME; Schaefer CE; Andaya C; Lazouskaya V; Fallis S; Wang C; Jin Y
    Chemosphere; 2012 Jul; 88(5):591-7. PubMed ID: 22483856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RDX and TNT residues from live-fire and blow-in-place detonations.
    Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S
    Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the transport of energetic materials in unsaturated sediments from cracked unexploded ordnance.
    Lewis J; Martel R; Trépanier L; Ampleman G; Thiboutot S
    J Environ Qual; 2009; 38(6):2229-36. PubMed ID: 19875778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of particulate Composition B during simulated weathering of larger detonation residues.
    Fuller ME; Schaefer CE; Andaya C; Fallis S
    J Hazard Mater; 2015; 283():1-6. PubMed ID: 25262478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressurized liquid extraction with water as a tool for chemical and toxicological screening of soil samples at army live-fire training ranges.
    Ragnvaldsson D; Brochu S; Wingfors H
    J Hazard Mater; 2007 Apr; 142(1-2):418-24. PubMed ID: 17030090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of nitroaromatic explosives residue at military shooting ranges using a sweeping-MEKC method.
    Yang YY; Liu JT; Lin CH
    Electrophoresis; 2009 Mar; 30(6):1084-7. PubMed ID: 19229840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of explosives on skin using ambient ionization mass spectrometry.
    Justes DR; Talaty N; Cotte-Rodriguez I; Cooks RG
    Chem Commun (Camb); 2007 Jun; (21):2142-4. PubMed ID: 17520116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and dissolution of microscale Composition B detonation residues in porous media.
    Fuller ME; Schaefer CE; Andaya C; Fallis S
    Chemosphere; 2014 Jul; 107():400-406. PubMed ID: 24534153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic residues from field disposal of gun propellants.
    Walsh MR; Walsh ME; Hewitt AD
    J Hazard Mater; 2010 Jan; 173(1-3):115-22. PubMed ID: 19758750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.