These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 19883949)

  • 1. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development.
    Stanley KA; Curtis LR; Simonich SL; Tanguay RL
    Aquat Toxicol; 2009 Dec; 95(4):355-61. PubMed ID: 19883949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of embryotoxicity using the zebrafish model.
    Truong L; Harper SL; Tanguay RL
    Methods Mol Biol; 2011; 691():271-9. PubMed ID: 20972759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water and sediment pesticide contamination on indigenous lands surrounded by oil palm plantations in the Brazilian Amazon.
    Damiani S; Leite Montalvão MT; de Alcântara Mendes R; Gomes da Costa AC; Sousa Passos CJ
    Heliyon; 2023 Oct; 9(10):e19920. PubMed ID: 37771527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiamethoxam affects the developmental stages of banded gourami (
    Hasan M; Sumon KA; Siddiquee MAM; Bhandari RK; Prodhan MDH; Rashid H
    Toxicol Rep; 2022; 9():1233-1239. PubMed ID: 36518489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish Is a Powerful Tool for Precision Medicine Approaches to Neurological Disorders.
    Ochenkowska K; Herold A; Samarut É
    Front Mol Neurosci; 2022; 15():944693. PubMed ID: 35875659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish.
    Hawkey AB; Glazer L; Dean C; Wells CN; Odamah KA; Slotkin TA; Seidler FJ; Levin ED
    Neurotoxicol Teratol; 2020; 78():106853. PubMed ID: 31911208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Zebrafish in Drug Discovery Toxicology.
    Cassar S; Adatto I; Freeman JL; Gamse JT; Iturria I; Lawrence C; Muriana A; Peterson RT; Van Cruchten S; Zon LI
    Chem Res Toxicol; 2020 Jan; 33(1):95-118. PubMed ID: 31625720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics.
    White DT; Saxena MT; Mumm JS
    Adv Drug Deliv Rev; 2019 Aug; 148():344-359. PubMed ID: 30769046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity.
    d'Amora M; Giordani S
    Front Neurosci; 2018; 12():976. PubMed ID: 30618594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical relationship between metabolic decomposition and chemical uptake predicts bioconcentration factor data for diverse chemical exposures.
    Rowland MA; Wear H; Watanabe KH; Gust KA; Mayo ML
    BMC Syst Biol; 2018 Aug; 12(1):81. PubMed ID: 30086736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Sperm Collection Procedures in Zebrafish.
    Wasden MB; Roberts RL; DeLaurier A
    J S C Acad Sci; 2017; 15(2):. PubMed ID: 29950952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population genetic diversity in zebrafish lines.
    Balik-Meisner M; Truong L; Scholl EH; Tanguay RL; Reif DM
    Mamm Genome; 2018 Feb; 29(1-2):90-100. PubMed ID: 29368091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice.
    Zhang P; Zhu W; Wang D; Yan J; Wang Y; Zhou Z; He L
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18870-18880. PubMed ID: 28653198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN.
    Noyes PD; Garcia GR; Tanguay RL
    Green Chem; 2016 Dec; 18(24):6410-6430. PubMed ID: 28461781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish: A Versatile Animal Model for Fertility Research.
    Hoo JY; Kumari Y; Shaikh MF; Hue SM; Goh BH
    Biomed Res Int; 2016; 2016():9732780. PubMed ID: 27556045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitation and prediction of sorptive losses during toxicity testing of polycyclic aromatic hydrocarbon (PAH) and nitrated PAH (NPAH) using polystyrene 96-well plates.
    Chlebowski AC; Tanguay RL; Simonich SL
    Neurotoxicol Teratol; 2016; 57():30-38. PubMed ID: 27170619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional in vivo hazard assessment using zebrafish.
    Truong L; Reif DM; St Mary L; Geier MC; Truong HD; Tanguay RL
    Toxicol Sci; 2014 Jan; 137(1):212-33. PubMed ID: 24136191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacteriosis in zebrafish colonies.
    Whipps CM; Lieggi C; Wagner R
    ILAR J; 2012; 53(2):95-105. PubMed ID: 23382341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics.
    Yuk J; Simpson MJ; Simpson AJ
    Ecotoxicology; 2012 Jul; 21(5):1301-13. PubMed ID: 22451197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles.
    Denoël M; D'Hooghe B; Ficetola GF; Brasseur C; De Pauw E; Thomé JP; Kestemont P
    Ecotoxicology; 2012 May; 21(4):1240-50. PubMed ID: 22383141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.