BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19884172)

  • 1. Application of proteomic marker ensembles to subcellular organelle identification.
    Andreyev AY; Shen Z; Guan Z; Ryan A; Fahy E; Subramaniam S; Raetz CR; Briggs S; Dennis EA
    Mol Cell Proteomics; 2010 Feb; 9(2):388-402. PubMed ID: 19884172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins.
    Yan W; Hwang D; Aebersold R
    Methods Mol Biol; 2008; 432():389-401. PubMed ID: 18370032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues.
    Hoffmann K; Blaudszun J; Brunken C; Höpker WW; Tauber R; Steinhart H
    Anal Bioanal Chem; 2005 Mar; 381(6):1138-44. PubMed ID: 15761741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches to Characterize Organelle, Compartment, or Structure Purity.
    Mueller SJ; Hoernstein SN; Reski R
    Methods Mol Biol; 2017; 1511():13-28. PubMed ID: 27730599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a UPLC-MRM-based targeted proteomic method to profile subcellular organelle marker proteins from human liver tissues.
    Qiu X; Doyle LM; Wang MZ
    Sci Rep; 2022 Jun; 12(1):10985. PubMed ID: 35768540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of Subcellular Compartments from Human Brain Tissue.
    Mueller TM; Kim P; Meador-Woodruff JH
    Methods Mol Biol; 2019; 1941():201-223. PubMed ID: 30707436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles.
    Jardim A; Hardie DB; Boitz J; Borchers CH
    J Proteome Res; 2018 Mar; 17(3):1194-1215. PubMed ID: 29332401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular fractionation for identification of biomarkers: serial detergent extraction by subcellular accessibility and solubility.
    Hwang SI; Han DK
    Methods Mol Biol; 2013; 1002():25-35. PubMed ID: 23625392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying bona fide components of an organelle by isotope-coded labeling of subcellular fractions : an example in peroxisomes.
    Marelli M; Nesvizhskii AI; Aitchison JD
    Methods Mol Biol; 2008; 432():357-71. PubMed ID: 18370030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes.
    Qattan AT; Mulvey C; Crawford M; Natale DA; Godovac-Zimmermann J
    J Proteome Res; 2010 Jan; 9(1):495-508. PubMed ID: 19911851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant organelle proteomics: collaborating for optimal cell function.
    Agrawal GK; Bourguignon J; Rolland N; Ephritikhine G; Ferro M; Jaquinod M; Alexiou KG; Chardot T; Chakraborty N; Jolivet P; Doonan JH; Rakwal R
    Mass Spectrom Rev; 2011; 30(5):772-853. PubMed ID: 21038434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa.
    Dangol S; Singh R; Chen Y; Jwa NS
    Mol Cells; 2017 Nov; 40(11):828-836. PubMed ID: 29113428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.
    Yang JS; Lee JY; Moon MH
    Anal Chem; 2015 Jun; 87(12):6342-8. PubMed ID: 26005782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of subcellular location by comparative proteomic analysis of native and density-shifted lysosomes.
    Della Valle MC; Sleat DE; Zheng H; Moore DF; Jadot M; Lobel P
    Mol Cell Proteomics; 2011 Apr; 10(4):M110.006403. PubMed ID: 21252268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of microsomes from Chinese hamster ovary cells by subcellular fractionation for its use in proteomic analysis.
    Pérez-Rodriguez S; de Jesús Ramírez-Lira M; Wulff T; Voldbor BG; Ramírez OT; Trujillo-Roldán MA; Valdez-Cruz NA
    PLoS One; 2020; 15(8):e0237930. PubMed ID: 32841274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes.
    Krajewski S; Tanaka S; Takayama S; Schibler MJ; Fenton W; Reed JC
    Cancer Res; 1993 Oct; 53(19):4701-14. PubMed ID: 8402648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular fractionation methods and strategies for proteomics.
    Lee YH; Tan HT; Chung MC
    Proteomics; 2010 Nov; 10(22):3935-56. PubMed ID: 21080488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of organelle discovery upon sub-cellular protein localisation.
    Breckels LM; Gatto L; Christoforou A; Groen AJ; Lilley KS; Trotter MW
    J Proteomics; 2013 Aug; 88():129-40. PubMed ID: 23523639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.