These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 19884310)
1. Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Finkel JS; Chinchilla K; Ursic D; Culbertson MR Genetics; 2010 Jan; 184(1):107-18. PubMed ID: 19884310 [TBL] [Abstract][Full Text] [Related]
2. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Ursic D; Chinchilla K; Finkel JS; Culbertson MR Nucleic Acids Res; 2004; 32(8):2441-52. PubMed ID: 15121901 [TBL] [Abstract][Full Text] [Related]
3. Sen1p contributes to genomic integrity by regulating expression of ribonucleotide reductase 1 (RNR1) in Saccharomyces cerevisiae. Golla U; Singh V; Azad GK; Singh P; Verma N; Mandal P; Chauhan S; Tomar RS PLoS One; 2013; 8(5):e64798. PubMed ID: 23741394 [TBL] [Abstract][Full Text] [Related]
4. Flocculation in Saccharomyces cerevisiae is regulated by RNA/DNA helicase Sen1p. Singh V; Azad GK; Sariki SK; Tomar RS FEBS Lett; 2015 Oct; 589(20 Pt B):3165-74. PubMed ID: 26364722 [TBL] [Abstract][Full Text] [Related]
5. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307 [TBL] [Abstract][Full Text] [Related]
6. Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Chinchilla K; Rodriguez-Molina JB; Ursic D; Finkel JS; Ansari AZ; Culbertson MR Eukaryot Cell; 2012 Apr; 11(4):417-29. PubMed ID: 22286094 [TBL] [Abstract][Full Text] [Related]
7. The putative nucleic acid helicase Sen1p is required for formation and stability of termini and for maximal rates of synthesis and levels of accumulation of small nucleolar RNAs in Saccharomyces cerevisiae. Rasmussen TP; Culbertson MR Mol Cell Biol; 1998 Dec; 18(12):6885-96. PubMed ID: 9819377 [TBL] [Abstract][Full Text] [Related]
8. Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human Senataxin that elicit cerebellar ataxia. Chen X; Müller U; Sundling KE; Brow DA Genetics; 2014 Oct; 198(2):577-90. PubMed ID: 25116135 [TBL] [Abstract][Full Text] [Related]
9. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Porrua O; Libri D Nat Struct Mol Biol; 2013 Jul; 20(7):884-91. PubMed ID: 23748379 [TBL] [Abstract][Full Text] [Related]
11. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination. Hazelbaker DZ; Marquardt S; Wlotzka W; Buratowski S Mol Cell; 2013 Jan; 49(1):55-66. PubMed ID: 23177741 [TBL] [Abstract][Full Text] [Related]
12. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Alzu A; Bermejo R; Begnis M; Lucca C; Piccini D; Carotenuto W; Saponaro M; Brambati A; Cocito A; Foiani M; Liberi G Cell; 2012 Nov; 151(4):835-846. PubMed ID: 23141540 [TBL] [Abstract][Full Text] [Related]
13. RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene, Whalen C; Tuohy C; Tallo T; Kaufman JW; Moore C; Kuehner JN G3 (Bethesda); 2018 May; 8(6):2043-2058. PubMed ID: 29686108 [TBL] [Abstract][Full Text] [Related]
14. Single-molecule characterization of extrinsic transcription termination by Sen1 helicase. Wang S; Han Z; Libri D; Porrua O; Strick TR Nat Commun; 2019 Apr; 10(1):1545. PubMed ID: 30948716 [TBL] [Abstract][Full Text] [Related]
15. RNA Polymerase II CTD Tyrosine 1 Is Required for Efficient Termination by the Nrd1-Nab3-Sen1 Pathway. Collin P; Jeronimo C; Poitras C; Robert F Mol Cell; 2019 Feb; 73(4):655-669.e7. PubMed ID: 30639244 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Han Z; Libri D; Porrua O Nucleic Acids Res; 2017 Feb; 45(3):1355-1370. PubMed ID: 28180347 [TBL] [Abstract][Full Text] [Related]
17. Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5'- to 3'-Helicase Activity with a Preference for Translocation on DNA Rather than RNA. Martin-Tumasz S; Brow DA J Biol Chem; 2015 Sep; 290(38):22880-9. PubMed ID: 26198638 [TBL] [Abstract][Full Text] [Related]
18. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1. Han Z; Jasnovidova O; Haidara N; Tudek A; Kubicek K; Libri D; Stefl R; Porrua O EMBO J; 2020 Apr; 39(7):e101548. PubMed ID: 32107786 [TBL] [Abstract][Full Text] [Related]
19. Sen1 has unique structural features grafted on the architecture of the Upf1-like helicase family. Leonaitė B; Han Z; Basquin J; Bonneau F; Libri D; Porrua O; Conti E EMBO J; 2017 Jun; 36(11):1590-1604. PubMed ID: 28408439 [TBL] [Abstract][Full Text] [Related]