These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19884310)

  • 21. The role of Ctk1 kinase in termination of small non-coding RNAs.
    Lenstra TL; Tudek A; Clauder S; Xu Z; Pachis ST; van Leenen D; Kemmeren P; Steinmetz LM; Libri D; Holstege FC
    PLoS One; 2013; 8(12):e80495. PubMed ID: 24324601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome.
    Chen X; Poorey K; Carver MN; Müller U; Bekiranov S; Auble DT; Brow DA
    PLoS Genet; 2017 Jun; 13(6):e1006863. PubMed ID: 28665995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The DEAD-box protein Dbp2p is linked to noncoding RNAs, the helicase Sen1p, and R-loops.
    Tedeschi FA; Cloutier SC; Tran EJ; Jankowsky E
    RNA; 2018 Dec; 24(12):1693-1705. PubMed ID: 30262458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair.
    Li W; Selvam K; Rahman SA; Li S
    Nucleic Acids Res; 2016 Aug; 44(14):6794-802. PubMed ID: 27179024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins.
    Ursic D; DeMarini DJ; Culbertson MR
    Mol Gen Genet; 1995 Dec; 249(6):571-84. PubMed ID: 8544822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Three Sequence Motifs in the Transcription Termination Factor Sen1 that Mediate Direct Interactions with Nrd1.
    Zhang Y; Chun Y; Buratowski S; Tong L
    Structure; 2019 Jul; 27(7):1156-1161.e4. PubMed ID: 31104813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule reconstruction of eukaryotic factor-dependent transcription termination.
    Xiong Y; Han W; Xu C; Shi J; Wang L; Jin T; Jia Q; Lu Y; Hu S; Dou SX; Lin W; Strick TR; Wang S; Li M
    Nat Commun; 2024 Jun; 15(1):5113. PubMed ID: 38879529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sen1 is a key regulator of transcription-driven conflicts.
    Aiello U; Challal D; Wentzinger G; Lengronne A; Appanah R; Pasero P; Palancade B; Libri D
    Mol Cell; 2022 Aug; 82(16):2952-2966.e6. PubMed ID: 35839782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing.
    Jamonnak N; Creamer TJ; Darby MM; Schaughency P; Wheelan SJ; Corden JL
    RNA; 2011 Nov; 17(11):2011-25. PubMed ID: 21954178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway.
    Fox MJ; Gao H; Smith-Kinnaman WR; Liu Y; Mosley AL
    PLoS Genet; 2015; 11(2):e1004999. PubMed ID: 25680078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase.
    Steinmetz EJ; Warren CL; Kuehner JN; Panbehi B; Ansari AZ; Brow DA
    Mol Cell; 2006 Dec; 24(5):735-746. PubMed ID: 17157256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Nrd1-Nab3-Sen1 transcription termination complex from a structural perspective.
    Chaves-Arquero B; Pérez-Cañadillas JM
    Biochem Soc Trans; 2023 Jun; 51(3):1257-1269. PubMed ID: 37222282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination.
    Kawauchi J; Mischo H; Braglia P; Rondon A; Proudfoot NJ
    Genes Dev; 2008 Apr; 22(8):1082-92. PubMed ID: 18413718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast Sen1 helicase protects the genome from transcription-associated instability.
    Mischo HE; Gómez-González B; Grzechnik P; Rondón AG; Wei W; Steinmetz L; Aguilera A; Proudfoot NJ
    Mol Cell; 2011 Jan; 41(1):21-32. PubMed ID: 21211720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription.
    Brambati A; Zardoni L; Achar YJ; Piccini D; Galanti L; Colosio A; Foiani M; Liberi G
    Nucleic Acids Res; 2018 Feb; 46(3):1227-1239. PubMed ID: 29059325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability.
    Appanah R; Lones EC; Aiello U; Libri D; De Piccoli G
    Cell Rep; 2020 Feb; 30(7):2094-2105.e9. PubMed ID: 32075754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration.
    Bennett CL; La Spada AR
    Adv Neurobiol; 2018; 20():265-281. PubMed ID: 29916023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cotranscriptional model for 3'-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor.
    Henras AK; Bertrand E; Chanfreau G
    RNA; 2004 Oct; 10(10):1572-85. PubMed ID: 15337846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes.
    Legros P; Malapert A; Niinuma S; Bernard P; Vanoosthuyse V
    PLoS Genet; 2014 Nov; 10(11):e1004794. PubMed ID: 25392932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-molecule characterization of Sen1 translocation properties provides insights into eukaryotic factor-dependent transcription termination.
    Wang S; Han Z; Strick TR
    Nucleic Acids Res; 2024 Apr; 52(6):3249-3261. PubMed ID: 38261990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.