These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 19884317)

  • 1. Exercise-induced histone modifications in human skeletal muscle.
    McGee SL; Fairlie E; Garnham AP; Hargreaves M
    J Physiol; 2009 Dec; 587(Pt 24):5951-8. PubMed ID: 19884317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone modifications and exercise adaptations.
    McGee SL; Hargreaves M
    J Appl Physiol (1985); 2011 Jan; 110(1):258-63. PubMed ID: 21030677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise.
    Jørgensen SB; Richter EA; Wojtaszewski JF
    J Physiol; 2006 Jul; 574(Pt 1):17-31. PubMed ID: 16690705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle.
    Egan B; Carson BP; Garcia-Roves PM; Chibalin AV; Sarsfield FM; Barron N; McCaffrey N; Moyna NM; Zierath JR; O'Gorman DJ
    J Physiol; 2010 May; 588(Pt 10):1779-90. PubMed ID: 20308248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone modifications and skeletal muscle metabolic gene expression.
    McGee SL; Hargreaves M
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):392-6. PubMed ID: 19793100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute Skeletal Muscle Contractions Orchestrate Signaling Mechanisms to Trigger Nuclear NFATc1 Shuttling and Epigenetic Histone Modifications.
    Suhr F; Braun K; Vanmunster M; Bloch W
    Cell Physiol Biochem; 2019; 52(3):633-652. PubMed ID: 30907990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise.
    Rose AJ; Kiens B; Richter EA
    J Physiol; 2006 Aug; 574(Pt 3):889-903. PubMed ID: 16690701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity.
    Chin ER
    J Appl Physiol (1985); 2005 Aug; 99(2):414-23. PubMed ID: 16020436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
    Frøsig C; Jørgensen SB; Hardie DG; Richter EA; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E411-7. PubMed ID: 14613924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men.
    Rose AJ; Broholm C; Kiillerich K; Finn SG; Proud CG; Rider MH; Richter EA; Kiens B
    J Physiol; 2005 Nov; 569(Pt 1):223-8. PubMed ID: 16210351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans.
    Rose AJ; Frøsig C; Kiens B; Wojtaszewski JF; Richter EA
    J Physiol; 2007 Sep; 583(Pt 2):785-95. PubMed ID: 17627985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle.
    McGee SL; Hargreaves M
    Diabetes; 2004 May; 53(5):1208-14. PubMed ID: 15111488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of mTOR by amino acids and resistance exercise in skeletal muscle.
    Deldicque L; Theisen D; Francaux M
    Eur J Appl Physiol; 2005 May; 94(1-2):1-10. PubMed ID: 15702344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogen-activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction.
    Widegren U; Ryder JW; Zierath JR
    Acta Physiol Scand; 2001 Jul; 172(3):227-38. PubMed ID: 11472310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutritional modulation of training-induced skeletal muscle adaptations.
    Hawley JA; Burke LM; Phillips SM; Spriet LL
    J Appl Physiol (1985); 2011 Mar; 110(3):834-45. PubMed ID: 21030665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval training remodels the proteome and acetylome of human skeletal muscle.
    Hostrup M; Lemminger AK; Stocks B; Gonzalez-Franquesa A; Larsen JK; Quesada JP; Thomassen M; Weinert BT; Bangsbo J; Deshmukh AS
    Elife; 2022 May; 11():. PubMed ID: 35638262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-uniform muscle adaptations to eccentric exercise and the implications for training and sport.
    Hedayatpour N; Falla D
    J Electromyogr Kinesiol; 2012 Jun; 22(3):329-33. PubMed ID: 22192598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle.
    Yan Z; Okutsu M; Akhtar YN; Lira VA
    J Appl Physiol (1985); 2011 Jan; 110(1):264-74. PubMed ID: 21030673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation.
    McKinsey TA; Zhang CL; Lu J; Olson EN
    Nature; 2000 Nov; 408(6808):106-11. PubMed ID: 11081517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.