These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19884317)

  • 21. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Invited review: intracellular signaling in contracting skeletal muscle.
    Sakamoto K; Goodyear LJ
    J Appl Physiol (1985); 2002 Jul; 93(1):369-83. PubMed ID: 12070227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical Exercise and Epigenetic Modifications in Skeletal Muscle.
    Widmann M; Nieß AM; Munz B
    Sports Med; 2019 Apr; 49(4):509-523. PubMed ID: 30778851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why muscle stops building when it's working.
    Rennie MJ
    J Physiol; 2005 Nov; 569(Pt 1):3. PubMed ID: 16210346
    [No Abstract]   [Full Text] [Related]  

  • 25. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress.
    McGee SL; Swinton C; Morrison S; Gaur V; Campbell DE; Jorgensen SB; Kemp BE; Baar K; Steinberg GR; Hargreaves M
    FASEB J; 2014 Aug; 28(8):3384-95. PubMed ID: 24732133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle.
    Rose AJ; Hargreaves M
    J Physiol; 2003 Nov; 553(Pt 1):303-9. PubMed ID: 14565989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise.
    Yu M; Stepto NK; Chibalin AV; Fryer LG; Carling D; Krook A; Hawley JA; Zierath JR
    J Physiol; 2003 Jan; 546(Pt 2):327-35. PubMed ID: 12527721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel mechanisms for resting nucleo-cytoplasmic shuttling and activity dependent translocation provide dual control of transcriptional regulators HDAC and NFAT in skeletal muscle fiber type plasticity.
    Shen T; Liu Y; Randall WR; Schneider MF
    J Muscle Res Cell Motil; 2006; 27(5-7):405-11. PubMed ID: 16874450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.
    Salminen A; Kauppinen A; Kaarniranta K
    Cell Signal; 2016 Aug; 28(8):887-95. PubMed ID: 27010499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lack of O-GlcNAcylation enhances exercise-dependent glucose utilization potentially through AMP-activated protein kinase activation in skeletal muscle.
    Murata K; Morino K; Ida S; Ohashi N; Lemecha M; Park SY; Ishikado A; Kume S; Choi CS; Sekine O; Ugi S; Maegawa H
    Biochem Biophys Res Commun; 2018 Jan; 495(2):2098-2104. PubMed ID: 29253568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner.
    Niu Y; Wang T; Liu S; Yuan H; Li H; Fu L
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2372-2381. PubMed ID: 28688716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans.
    Wijngaarden MA; Bakker LE; van der Zon GC; 't Hoen PA; van Dijk KW; Jazet IM; Pijl H; Guigas B
    Am J Physiol Endocrinol Metab; 2014 Nov; 307(10):E885-95. PubMed ID: 25249505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species are signalling molecules for skeletal muscle adaptation.
    Powers SK; Duarte J; Kavazis AN; Talbert EE
    Exp Physiol; 2010 Jan; 95(1):1-9. PubMed ID: 19880534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AMP kinase in exercise adaptation of skeletal muscle.
    Jessen N; Sundelin EI; Møller AB
    Drug Discov Today; 2014 Jul; 19(7):999-1002. PubMed ID: 24637044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription factor EB and TFE3: new metabolic coordinators mediating adaptive responses to exercise in skeletal muscle?
    Markby GR; Sakamoto K
    Am J Physiol Endocrinol Metab; 2020 Oct; 319(4):E763-E768. PubMed ID: 32830550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise.
    Trenerry MK; Carey KA; Ward AC; Cameron-Smith D
    J Appl Physiol (1985); 2007 Apr; 102(4):1483-9. PubMed ID: 17204573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exercise increases hyper-acetylation of histones on the Cis-element of NRF-1 binding to the Mef2a promoter: Implications on type 2 diabetes.
    Joseph JS; Ayeleso AO; Mukwevho E
    Biochem Biophys Res Commun; 2017 Apr; 486(1):83-87. PubMed ID: 28263745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading.
    Pandorf CE; Haddad F; Wright C; Bodell PW; Baldwin KM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C6-16. PubMed ID: 19369448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of AMPK in skeletal muscle gene adaptation in relation to exercise.
    Jørgensen SB; Jensen TE; Richter EA
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):904-11. PubMed ID: 18059615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive responses of histone modifications to resistance exercise in human skeletal muscle.
    Lim C; Shimizu J; Kawano F; Kim HJ; Kim CK
    PLoS One; 2020; 15(4):e0231321. PubMed ID: 32271843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.