These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 19884317)

  • 41. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles.
    Dartnall TJ; Nordstrom MA; Semmler JG
    J Neurophysiol; 2011 Mar; 105(3):1225-35. PubMed ID: 21248060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exercise and MEF2-HDAC interactions.
    McGee SL
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):852-6. PubMed ID: 18059609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise.
    Kristensen DE; Albers PH; Prats C; Baba O; Birk JB; Wojtaszewski JF
    J Physiol; 2015 Apr; 593(8):2053-69. PubMed ID: 25640469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle.
    Wilson C; Hargreaves M; Howlett KF
    Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E341-6. PubMed ID: 16188907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice.
    Ng SY; Mikhail A; Ljubicic V
    J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle.
    Ho RC; Hirshman MF; Li Y; Cai D; Farmer JR; Aschenbach WG; Witczak CA; Shoelson SE; Goodyear LJ
    Am J Physiol Cell Physiol; 2005 Oct; 289(4):C794-801. PubMed ID: 15888549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation.
    Chang H; Kwon O; Shin MS; Kang GM; Leem YH; Lee CH; Kim SJ; Roh E; Kim HK; Youn BS; Kim MS
    J Appl Physiol (1985); 2018 Sep; 125(3):715-722. PubMed ID: 29952246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skeletal muscle adaptations with age, inactivity, and therapeutic exercise.
    Thompson LV
    J Orthop Sports Phys Ther; 2002 Feb; 32(2):44-57. PubMed ID: 11838580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects.
    Terzis G; Georgiadis G; Stratakos G; Vogiatzis I; Kavouras S; Manta P; Mascher H; Blomstrand E
    Eur J Appl Physiol; 2008 Jan; 102(2):145-52. PubMed ID: 17874120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute exercise does not cause sustained elevations in AMPK signaling or expression.
    Lee-Young RS; Koufogiannis G; Canny BJ; McConell GK
    Med Sci Sports Exerc; 2008 Aug; 40(8):1490-4. PubMed ID: 18614941
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit.
    McGee SL; Hargreaves M
    Nat Rev Endocrinol; 2020 Sep; 16(9):495-505. PubMed ID: 32632275
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 5'-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics.
    Barnes BR; Glund S; Long YC; Hjälm G; Andersson L; Zierath JR
    FASEB J; 2005 May; 19(7):773-9. PubMed ID: 15857891
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle.
    Widegren U; Jiang XJ; Krook A; Chibalin AV; Björnholm M; Tally M; Roth RA; Henriksson J; Wallberg-henriksson H; Zierath JR
    FASEB J; 1998 Oct; 12(13):1379-89. PubMed ID: 9761781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exercise increases the binding of MEF2A to the Cpt1b promoter in mouse skeletal muscle.
    Yuan H; Niu Y; Liu X; Fu L
    Acta Physiol (Oxf); 2014 Dec; 212(4):283-92. PubMed ID: 25213552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy.
    Backs J; Song K; Bezprozvannaya S; Chang S; Olson EN
    J Clin Invest; 2006 Jul; 116(7):1853-64. PubMed ID: 16767219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation.
    Brooks SV; Vasilaki A; Larkin LM; McArdle A; Jackson MJ
    J Physiol; 2008 Aug; 586(16):3979-90. PubMed ID: 18591188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
    Deng X; Ewton DZ; Mercer SE; Friedman E
    J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle.
    Takimoto M; Takeyama M; Hamada T
    Metabolism; 2013 Nov; 62(11):1633-40. PubMed ID: 23886299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.