BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19884341)

  • 1. Dephosphorylation of gamma H2A by Glc7/protein phosphatase 1 promotes recovery from inhibition of DNA replication.
    Bazzi M; Mantiero D; Trovesi C; Lucchini G; Longhese MP
    Mol Cell Biol; 2010 Jan; 30(1):131-45. PubMed ID: 19884341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
    Szyjka SJ; Aparicio JG; Viggiani CJ; Knott S; Xu W; Tavaré S; Aparicio OM
    Genes Dev; 2008 Jul; 22(14):1906-20. PubMed ID: 18628397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2B mono-ubiquitylation facilitates fork stalling and recovery during replication stress by coordinating Rad53 activation and chromatin assembly.
    Lin CY; Wu MY; Gay S; Marjavaara L; Lai MS; Hsiao WC; Hung SH; Tseng HY; Wright DE; Wang CY; Hsu GS; Devys D; Chabes A; Kao CF
    PLoS Genet; 2014 Oct; 10(10):e1004667. PubMed ID: 25275495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells.
    Cotta-Ramusino C; Fachinetti D; Lucca C; Doksani Y; Lopes M; Sogo J; Foiani M
    Mol Cell; 2005 Jan; 17(1):153-9. PubMed ID: 15629726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae.
    Guillemain G; Ma E; Mauger S; Miron S; Thai R; Guérois R; Ochsenbein F; Marsolier-Kergoat MC
    Mol Cell Biol; 2007 May; 27(9):3378-89. PubMed ID: 17325030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR; Sclafani RA
    Genetics; 2006 Sep; 174(1):87-99. PubMed ID: 16816422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations.
    Cobb JA; Schleker T; Rojas V; Bjergbaek L; Tercero JA; Gasser SM
    Genes Dev; 2005 Dec; 19(24):3055-69. PubMed ID: 16357221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects.
    Sogo JM; Lopes M; Foiani M
    Science; 2002 Jul; 297(5581):599-602. PubMed ID: 12142537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of the essential s phase function of the rad53 checkpoint kinase.
    Hoch NC; Chen ES; Buckland R; Wang SC; Fazio A; Hammet A; Pellicioli A; Chabes A; Tsai MD; Heierhorst J
    Mol Cell Biol; 2013 Aug; 33(16):3202-13. PubMed ID: 23754745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.
    Ohouo PY; Bastos de Oliveira FM; Liu Y; Ma CJ; Smolka MB
    Nature; 2013 Jan; 493(7430):120-4. PubMed ID: 23160493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic interaction of RAD53 protein kinase with histones is important for DNA replication.
    Holzen TM; Sclafani R
    Cell Cycle; 2010 Dec; 9(23):4735-47. PubMed ID: 21099362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks.
    Devbhandari S; Remus D
    Nat Struct Mol Biol; 2020 May; 27(5):461-471. PubMed ID: 32341532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication.
    Signon L
    G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation.
    Bermejo R; Doksani Y; Capra T; Katou YM; Tanaka H; Shirahige K; Foiani M
    Genes Dev; 2007 Aug; 21(15):1921-36. PubMed ID: 17671091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helicase Subunit Cdc45 Targets the Checkpoint Kinase Rad53 to Both Replication Initiation and Elongation Complexes after Fork Stalling.
    Can G; Kauerhof AC; Macak D; Zegerman P
    Mol Cell; 2019 Feb; 73(3):562-573.e3. PubMed ID: 30595439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks.
    Hegnauer AM; Hustedt N; Shimada K; Pike BL; Vogel M; Amsler P; Rubin SM; van Leeuwen F; Guénolé A; van Attikum H; Thomä NH; Gasser SM
    EMBO J; 2012 Sep; 31(18):3768-83. PubMed ID: 22820947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the Saccharomyces cerevisiae Cdc7-Dbf4 complex in the replication checkpoint.
    Ogi H; Wang CZ; Nakai W; Kawasaki Y; Masumoto H
    Gene; 2008 May; 414(1-2):32-40. PubMed ID: 18372119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae.
    Conde F; Ontoso D; Acosta I; Gallego-Sánchez A; Bueno A; San-Segundo PA
    DNA Repair (Amst); 2010 Oct; 9(10):1038-49. PubMed ID: 20674515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.