BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19884349)

  • 1. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus.
    Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y
    Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway.
    Hewavitharana T; Wedegaertner PB
    Cell Signal; 2015 Dec; 27(12):2444-51. PubMed ID: 26327583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial regulation of Raf kinase signaling by RKTG.
    Feng L; Xie X; Ding Q; Luo X; He J; Fan F; Liu W; Wang Z; Chen Y
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14348-53. PubMed ID: 17724343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi.
    Klayman LM; Wedegaertner PB
    J Biol Chem; 2017 Feb; 292(5):1773-1784. PubMed ID: 27994056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the topology and functional domains of RKTG.
    Luo X; Feng L; Jiang X; Xiao F; Wang Z; Feng GS; Chen Y
    Biochem J; 2008 Sep; 414(3):399-406. PubMed ID: 18547165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation.
    Saini DK; Karunarathne WK; Angaswamy N; Saini D; Cho JH; Kalyanaraman V; Gautam N
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11417-22. PubMed ID: 20534534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inotropic peptide βARKct improves βAR responsiveness in normal and failing cardiomyocytes through G(βγ)-mediated L-type calcium current disinhibition.
    Völkers M; Weidenhammer C; Herzog N; Qiu G; Spaich K; Wegner FV; Peppel K; Müller OJ; Schinkel S; Rabinowitz JE; Hippe HJ; Brinks H; Katus HA; Koch WJ; Eckhart AD; Friedrich O; Most P
    Circ Res; 2011 Jan; 108(1):27-39. PubMed ID: 21106943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G protein betagamma11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the alpha subunit type.
    Azpiazu I; Akgoz M; Kalyanaraman V; Gautam N
    Cell Signal; 2006 Aug; 18(8):1190-200. PubMed ID: 16242307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking.
    Dupré DJ; Robitaille M; Ethier N; Villeneuve LR; Mamarbachi AM; Hébert TE
    J Biol Chem; 2006 Nov; 281(45):34561-73. PubMed ID: 16959776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysophosphatidylcholines activate G2A inducing G(αi)₋₁-/G(αq/)₁₁- Ca²(+) flux, G(βγ)-Hck activation and clathrin/β-arrestin-1/GRK6 recruitment in PMNs.
    Khan SY; McLaughlin NJ; Kelher MR; Eckels P; Gamboni-Robertson F; Banerjee A; Silliman CC
    Biochem J; 2010 Nov; 432(1):35-45. PubMed ID: 20799926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex.
    Akgoz M; Kalyanaraman V; Gautam N
    J Biol Chem; 2004 Dec; 279(49):51541-4. PubMed ID: 15448129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases.
    Daaka Y; Pitcher JA; Richardson M; Stoffel RH; Robishaw JD; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2180-5. PubMed ID: 9122168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits.
    Irannejad R; Wedegaertner PB
    J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition.
    Jiang Y; Xie X; Li Z; Wang Z; Zhang Y; Ling ZQ; Pan Y; Wang Z; Chen Y
    Cancer Res; 2011 Apr; 71(8):2959-68. PubMed ID: 21385899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction.
    Akgoz M; Kalyanaraman V; Gautam N
    Cell Signal; 2006 Oct; 18(10):1758-68. PubMed ID: 16517125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling.
    Smrcka AV; Fisher I
    Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression.
    Rajanala K; Klayman LM; Wedegaertner PB
    Mol Biol Cell; 2021 Oct; 32(20):br2. PubMed ID: 34260268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G betagamma binds histone deacetylase 5 (HDAC5) and inhibits its transcriptional co-repression activity.
    Spiegelberg BD; Hamm HE
    J Biol Chem; 2005 Dec; 280(50):41769-76. PubMed ID: 16221676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt.
    Liu S; Premont RT; Kontos CD; Huang J; Rockey DC
    J Biol Chem; 2003 Dec; 278(50):49929-35. PubMed ID: 14523027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.