These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19884496)

  • 21. The central role of diminishing sea ice in recent Arctic temperature amplification.
    Screen JA; Simmonds I
    Nature; 2010 Apr; 464(7293):1334-7. PubMed ID: 20428168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.
    Hofer S; Tedstone AJ; Fettweis X; Bamber JL
    Sci Adv; 2017 Jun; 3(6):e1700584. PubMed ID: 28782014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity.
    Simmonds I; Li M
    Ann N Y Acad Sci; 2021 Nov; 1504(1):167-186. PubMed ID: 34313329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse.
    Holloway MD; Sime LC; Singarayer JS; Tindall JC; Bunch P; Valdes PJ
    Nat Commun; 2016 Aug; 7():12293. PubMed ID: 27526639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient benefits of climate change for a high-Arctic polar bear (Ursus maritimus) subpopulation.
    Laidre KL; Atkinson SN; Regehr EV; Stern HL; Born EW; Wiig Ø; Lunn NJ; Dyck M; Heagerty P; Cohen BR
    Glob Chang Biol; 2020 Nov; 26(11):6251-6265. PubMed ID: 32964662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation.
    Weber ME; Golledge NR; Fogwill CJ; Turney CSM; Thomas ZA
    Nat Commun; 2021 Nov; 12(1):6683. PubMed ID: 34795275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal Arctic sea ice forecasting with probabilistic deep learning.
    Andersson TR; Hosking JS; Pérez-Ortiz M; Paige B; Elliott A; Russell C; Law S; Jones DC; Wilkinson J; Phillips T; Byrne J; Tietsche S; Sarojini BB; Blanchard-Wrigglesworth E; Aksenov Y; Downie R; Shuckburgh E
    Nat Commun; 2021 Aug; 12(1):5124. PubMed ID: 34446701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A year-round satellite sea-ice thickness record from CryoSat-2.
    Landy JC; Dawson GJ; Tsamados M; Bushuk M; Stroeve JC; Howell SEL; Krumpen T; Babb DG; Komarov AS; Heorton HDBS; Belter HJ; Aksenov Y
    Nature; 2022 Sep; 609(7927):517-522. PubMed ID: 36104558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Arctic sea ice melting controlled by larger heat discharge of mid-Holocene rivers.
    Dong J; Shi X; Gong X; Astakhov AS; Hu L; Liu X; Yang G; Wang Y; Vasilenko Y; Qiao S; Bosin A; Lohmann G
    Nat Commun; 2022 Sep; 13(1):5368. PubMed ID: 36100586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methane excess in Arctic surface water-triggered by sea ice formation and melting.
    Damm E; Rudels B; Schauer U; Mau S; Dieckmann G
    Sci Rep; 2015 Nov; 5():16179. PubMed ID: 26553610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss.
    Gomez N; Pollard D; Holland D
    Nat Commun; 2015 Nov; 6():8798. PubMed ID: 26554381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of Arctic sea ice loss on mid-Holocene climate.
    Park HS; Kim SJ; Seo KH; Stewart AL; Kim SY; Son SW
    Nat Commun; 2018 Nov; 9(1):4571. PubMed ID: 30385755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Natural variability of the Arctic Ocean sea ice during the present interglacial.
    de Vernal A; Hillaire-Marcel C; Le Duc C; Roberge P; Brice C; Matthiessen J; Spielhagen RF; Stein R
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26069-26075. PubMed ID: 33020299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers.
    Henley SF; Porter M; Hobbs L; Braun J; Guillaume-Castel R; Venables EJ; Dumont E; Cottier F
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190361. PubMed ID: 32862810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.
    Spolaor A; Vallelonga P; Turetta C; Maffezzoli N; Cozzi G; Gabrieli J; Barbante C; Goto-Azuma K; Saiz-Lopez A; Cuevas CA; Dahl-Jensen D
    Sci Rep; 2016 Sep; 6():33925. PubMed ID: 27650478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing.
    Gomez N; Weber ME; Clark PU; Mitrovica JX; Han HK
    Nature; 2020 Nov; 587(7835):600-604. PubMed ID: 33239798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.
    Serreze MC; Meier WN
    Ann N Y Acad Sci; 2019 Jan; 1436(1):36-53. PubMed ID: 29806697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antarctic sea ice losses drive gains in benthic carbon drawdown.
    Barnes DK
    Curr Biol; 2015 Sep; 25(18):R789-90. PubMed ID: 26394097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of sea ice in the Arctic.
    Perovich DK; Richter-Menge JA
    Ann Rev Mar Sci; 2009; 1():417-41. PubMed ID: 21141043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A seamless approach to understanding and predicting Arctic sea ice in Met Office modelling systems.
    Hewitt HT; Ridley JK; Keen AB; West AE; Peterson KA; Rae JG; Milton SF; Bacon S
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2045):. PubMed ID: 26032316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.