These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19884937)

  • 1. Fast numerical simulation of diffraction from large volume holograms.
    Kalkum F
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2393-7. PubMed ID: 19884937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing.
    Miura M; Nitta K; Matoba O
    J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2269-74. PubMed ID: 19798408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography.
    Marian A; Charrière F; Colomb T; Montfort F; Kühn J; Marquet P; Depeursinge C
    J Microsc; 2007 Feb; 225(Pt 2):156-69. PubMed ID: 17359250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction.
    Wu Y; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1191-6. PubMed ID: 21643404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of curved Bragg diffraction images from plane wave reference volume holograms.
    Oh SB; Watson JM; Barbastathis G
    Appl Opt; 2009 Nov; 48(31):5984-96. PubMed ID: 19881666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction-based modeling of high-numerical-aperture in-line lensless holograms.
    Restrepo JF; Garcia-Sucerquia J
    Appl Opt; 2011 Apr; 50(12):1745-52. PubMed ID: 21509066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms.
    Neipp C; Pascual I; Belendez A
    Opt Express; 2002 Nov; 10(23):1374-83. PubMed ID: 19452002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere.
    Santillan AO; Cutanda-Henríquez V
    J Acoust Soc Am; 2008 Nov; 124(5):2733-41. PubMed ID: 19045761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing the far field scattered or radiated by objects inside layered fluid media using approximate Green's functions.
    Zampolli M; Tesei A; Canepa G; Godin OA
    J Acoust Soc Am; 2008 Jun; 123(6):4051-8. PubMed ID: 18537357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method.
    Wu Y; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2444-51. PubMed ID: 19884946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution.
    Zhang F; Pedrini G; Osten W
    Opt Lett; 2006 Jun; 31(11):1633-5. PubMed ID: 16688244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the fast-Fourier-transform-based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage.
    Gombköto B; Koppa P; Maák P; Lorincz E
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2954-60. PubMed ID: 17047723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High order integral equation method for diffraction gratings.
    Lu W; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):734-40. PubMed ID: 22561931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thickness measurement for volume holograms by analysis of first-order diffraction.
    Harthong J; Medjahed A
    Appl Opt; 1992 Apr; 31(11):1803-9. PubMed ID: 20720821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space.
    van Zon JS; ten Wolde PR
    J Chem Phys; 2005 Dec; 123(23):234910. PubMed ID: 16392952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction by circular apertures. 1: Method of linear phase and amplitude approximation.
    Gravelsaeter T; Stamnes JJ
    Appl Opt; 1982 Oct; 21(20):3644-51. PubMed ID: 20396290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation of Aberrations due to a Wavelength Shift in Holography.
    Moran JM
    Appl Opt; 1971 Aug; 10(8):1909-13. PubMed ID: 20111226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wigner distribution function of volume holograms.
    Oh SB; Barbastathis G
    Opt Lett; 2009 Sep; 34(17):2584-6. PubMed ID: 19724497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.