These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19885500)

  • 21. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.
    Zhu S; Das A; Bui L; Zhou H; Curran DP; Rueping M
    J Am Chem Soc; 2013 Feb; 135(5):1823-9. PubMed ID: 23330701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative photoredox catalysis: mild and selective deprotection of PMB ethers mediated by visible light.
    Tucker JW; Narayanam JM; Shah PS; Stephenson CR
    Chem Commun (Camb); 2011 May; 47(17):5040-2. PubMed ID: 21431223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tandem oxidation/rearrangement of beta-ketoesters to tartronic esters with molecular oxygen catalyzed by calcium iodide under visible light irradiation with fluorescent lamp.
    Kanai N; Nakayama H; Tada N; Itoh A
    Org Lett; 2010 May; 12(9):1948-51. PubMed ID: 20349944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation into copper catalyzed D-penicillamine oxidation and subsequent hydrogen peroxide generation.
    Gupte A; Mumper RJ
    J Inorg Biochem; 2007 Apr; 101(4):594-602. PubMed ID: 17275091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxide oxidation of primary alcohols to aldehydes by chloroperoxidase catalysis.
    Geigert J; Dalietos DJ; Neidleman SL; Lee TD; Wadsworth J
    Biochem Biophys Res Commun; 1983 Aug; 114(3):1104-8. PubMed ID: 6615505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deactivation mechanisms of chloroperoxidase during biotransformations.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 Apr; 93(6):1190-5. PubMed ID: 16425305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and function of vanadium haloperoxidases.
    Raugei S; Carloni P
    J Phys Chem B; 2006 Mar; 110(8):3747-58. PubMed ID: 16494433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzyme-catalysed oxygenation and deoxygenation routes to chiral thiosulfinates.
    Boyd DR; Sharma ND; Kennedy MA; Shepherd SD; Malone JF; Alves-Areias A; Holt R; Allenmark SG; Lemurell MA; Dalton H; Luckarift H
    Chem Commun (Camb); 2002 Jul; (14):1452-3. PubMed ID: 12189839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation.
    Murahashi S; Nakae T; Terai H; Komiya N
    J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bromine derivatives of amino acids as intermediates in the peroxidase-catalyzed formation of singlet oxygen.
    Kanofsky JR
    Arch Biochem Biophys; 1989 Oct; 274(1):229-34. PubMed ID: 2774574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta.
    Shoji O; Fujishiro T; Nakajima H; Kim M; Nagano S; Shiro Y; Watanabe Y
    Angew Chem Int Ed Engl; 2007; 46(20):3656-9. PubMed ID: 17385817
    [No Abstract]   [Full Text] [Related]  

  • 32. Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene.
    Zhu G; Wang P
    J Biotechnol; 2005 May; 117(2):195-202. PubMed ID: 15823408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen peroxide and oxygen-hydrogen oxidation of aromatic compounds in catalytic systems containing heteropoly compounds.
    Kuznetsova NI; Kirillova NV; Kuznetsova LI; Smirnova MY; Likholobov VA
    J Hazard Mater; 2007 Jul; 146(3):569-76. PubMed ID: 17532134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembled naphthalenediimide derivative films for light-assisted electrochemical reduction of oxygen.
    Castaldelli E; Triboni ER; Demets GJ
    Chem Commun (Camb); 2011 May; 47(19):5581-3. PubMed ID: 21461438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chloroperoxidase-catalyzed oxidation of phenols. Mechanism, selectivity, and characterization of enzyme-substrate complexes.
    Casella L; Poli S; Gullotti M; Selvaggini C; Beringhelli T; Marchesini A
    Biochemistry; 1994 May; 33(21):6377-86. PubMed ID: 8204570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloroperoxidase-catalyzed oxidation of aminopyrine.
    Sayo H; Saito M; Lee E; Kariya K
    Chem Pharm Bull (Tokyo); 1989 Dec; 37(12):3347-50. PubMed ID: 2632082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compound I formation is a partially rate-limiting process in chloroperoxidase-catalyzed bromination reactions.
    Libby RD; Rotberg NS
    J Biol Chem; 1990 Sep; 265(25):14808-11. PubMed ID: 2394699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly enantioselective oxidation of cis-cyclopropylmethanols to corresponding aldehydes catalyzed by chloroperoxidase.
    Hu S; Dordick JS
    J Org Chem; 2002 Jan; 67(1):314-7. PubMed ID: 11777481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines.
    Doerge DR; Corbett MD
    Chem Res Toxicol; 1991; 4(5):556-60. PubMed ID: 1793805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.