BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1988596)

  • 1. Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats.
    Nakatani H; Hashimoto N; Kang Y; Yamazoe N; Kikuchi H; Yamaguchi S; Niimi H
    J Neurosurg; 1991 Feb; 74(2):258-62. PubMed ID: 1988596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rheological study on the development and growth of cerebral aneurysms using an experimental animal model].
    Nakatani H
    Nihon Geka Hokan; 1991 Nov; 60(6):435-48. PubMed ID: 1820015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental study on the mechanism of injury and proliferation of intima in the process of cerebral aneurysm development].
    Kang Y
    Nihon Geka Hokan; 1990 Jan; 59(1):10-26. PubMed ID: 2130765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of blood coagulation factor XIII on the development of experimental cerebral aneurysms in rats.
    Kang Y; Hashimoto N; Kikuchi H; Yamazoe N; Hazama F
    J Neurosurg; 1990 Aug; 73(2):242-7. PubMed ID: 2366080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An animal model of cerebral aneurysms.
    Hazama F; Hashimoto N
    Neuropathol Appl Neurobiol; 1987; 13(2):77-90. PubMed ID: 3614543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of the elastic skeleton of intracranial arteries in animal and human vessels and experimentally induced cerebral aneurysms].
    Yamazoe N
    Nihon Geka Hokan; 1991 Jan; 60(1):13-24. PubMed ID: 1819235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [What is the origin of cerebral aneurysms?].
    Swietaszczyk C; Maciaczyk J; Tafil-Klawe M; Kasprzak HA
    Przegl Lek; 2004; 61(2):115-9. PubMed ID: 15230154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk of aneurysmal rupture: the importance of neck orifice positioning-assessment using computational flow simulation.
    Ohshima T; Miyachi S; Hattori K; Takahashi I; Ishii K; Izumi T; Yoshida J
    Neurosurgery; 2008 Apr; 62(4):767-73; discussion 773-5. PubMed ID: 18496182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular remodeling in single stent-assisted coiling displaces and attenuates the flow impingement zone at the neck of intracranial bifurcation aneurysms.
    Gao B; Baharoglu MI; Malek AM
    Neurosurgery; 2013 May; 72(5):739-48; discussion 748. PubMed ID: 23328687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo flow visualization of induced saccular cerebral aneurysms in rats.
    Nakatani H; Hashimoto N; Kikuchi H; Yamaguchi S; Niimi H
    Acta Neurochir (Wien); 1993; 122(3-4):244-9. PubMed ID: 8372716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early changes of experimentally induced cerebral aneurysms in rats. Light-microscopic study.
    Hazama F; Kataoka H; Yamada E; Kayembe K; Hashimoto N; Kojima M; Kim C
    Am J Pathol; 1986 Sep; 124(3):399-404. PubMed ID: 3766700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic stress in terminal saccular aneurysms: a laser-Doppler study.
    Steiger HJ; Liepsch DW; Poll A; Reulen HJ
    Heart Vessels; 1988; 4(3):162-9. PubMed ID: 3248984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats.
    Jamous MA; Nagahiro S; Kitazato KT; Tamura T; Aziz HA; Shono M; Satoh K
    J Neurosurg; 2007 Aug; 107(2):405-11. PubMed ID: 17695397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study.
    Kojima M; Handa H; Hashimoto N; Kim C; Hazama F
    Stroke; 1986; 17(5):835-41. PubMed ID: 3764951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic skeleton of intracranial cerebral aneurysms in rats.
    Yamazoe N; Hashimoto N; Kikuchi H; Hazama F
    Stroke; 1990 Dec; 21(12):1722-6. PubMed ID: 2264079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age changes at cerebral artery bifurcations and the pathogenesis of berry aneurysms.
    Sheffield EA; Weller RO
    J Neurol Sci; 1980 Jun; 46(3):341-52. PubMed ID: 7381519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex formation and associated aneurysmogenic transverse rotational shear stress near the apex of wide-angle cerebral bifurcations.
    Malek AM; Hippelheuser JE; Lauric A
    J Neurosurg; 2022 Jun; 136(6):1726-1737. PubMed ID: 34715656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal model of cerebral aneurysms: pathology and pathogenesis of induced cerebral aneurysms in rats.
    Hashimoto N; Handa H; Nagata I; Hazama F
    Neurol Res; 1984; 6(1-2):33-40. PubMed ID: 6147777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of internal elastic lamina in development of induced cerebral aneurysms in rats.
    Kim C; Kikuchi H; Hashimoto N; Kojima M; Kang Y; Hazama F
    Stroke; 1988 Apr; 19(4):507-11. PubMed ID: 3363580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.
    Shi C; Kojima M; Anzai H; Tercero C; Ikeda S; Ohta M; Fukuda T; Arai F; Najdovski Z; Negoro M; Irie K
    Int J Med Robot; 2013 Jun; 9(2):213-22. PubMed ID: 23483681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.