BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 19886199)

  • 1. [Metabolic activity of thalamic and telencephalic auditory centers in the pigeon].
    Belekhova MG; Chudinova TV; Kenigfest NB
    Zh Evol Biokhim Fiziol; 2009; 45(5):511-7. PubMed ID: 19886199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-and-belt organisation of the mesencephalic and forebrain auditory centres in turtles: expression of calcium-binding proteins and metabolic activity.
    Belekhova MG; Chudinova TV; Repérant J; Ward R; Jay B; Vesselkin NP; Kenigfest NB
    Brain Res; 2010 Jul; 1345():84-102. PubMed ID: 20478279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Activity of cytochrome oxidase in centers of tectofugal and thalamofugal channels of the visual system of pigeon Columba livia].
    Belikhova MG; Kenigfest NB; Chudinova TV
    Zh Evol Biokhim Fiziol; 2011; 47(1):73-84. PubMed ID: 21469344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connections of the auditory forebrain in the pigeon (Columba livia).
    Wild JM; Karten HJ; Frost BJ
    J Comp Neurol; 1993 Nov; 337(1):32-62. PubMed ID: 8276991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Distribution of metabolic activity (cytochrome oxidase) and immunoreactivity to calcium-binding proteins in turtle brainstem auditory nuclei].
    Belekhova MG; Chudinova TV; Kenigfest NB; Kreasnoshchekova EI
    Zh Evol Biokhim Fiziol; 2008; 44(3):302-10. PubMed ID: 18727419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The level of metabolic activity (cytochrome oxidase) as an index of functional significance of tectofugal and thalamofugal channels of the reptilian visual system].
    Belekhova Mg; Chudinova TV; Kenigfest NB; Krasnoshchekova EI
    Zh Evol Biokhim Fiziol; 2007; 43(1):87-98. PubMed ID: 17408097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A comparative histochemical study of cytochrome oxidase activity in the somatosensory and auditory brain centers in the normal rat and after exposure to superhigh-frequency electromagnetic fields].
    Krasnoshchekova EI; Rumiantseva TA; Kulikov GA
    Zh Evol Biokhim Fiziol; 1995; 31(5-6):573-83. PubMed ID: 8714296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional variations of cytochrome oxidase activity in the central auditory system of Relnrl-Orl (reeler) mutant mice.
    Hayzoun K; Lalonde R; Mariani J; Strazielle C
    Neurosci Res; 2007 Aug; 58(4):378-85. PubMed ID: 17499872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry.
    Brauth SE
    Brain Res; 1990 Jan; 508(1):142-6. PubMed ID: 2159823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse auditory cortex differs from visual and somatosensory cortices in the laminar distribution of cytochrome oxidase and acetylcholinesterase.
    Anderson LA; Christianson GB; Linden JF
    Brain Res; 2009 Feb; 1252():130-42. PubMed ID: 19061871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic activity of the thalamic and telencephalic auditory centers of reptiles.
    Belekhova MG; Chudinova TV; Kenigfest NB; Vesselkin NP
    Dokl Biol Sci; 2007; 416():329-32. PubMed ID: 18047009
    [No Abstract]   [Full Text] [Related]  

  • 12. A survey of the auditory midbrain, thalamus and forebrain in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry.
    Dezsö A; Schwarz DW; Schwarz IE
    J Otolaryngol; 1993 Oct; 22(5):391-6. PubMed ID: 8283511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome oxidase activity reveals parcellations of the pigeon's ectostriatum.
    Hellmann B; Waldmann C; Güntürkün O
    Neuroreport; 1995 Apr; 6(6):881-5. PubMed ID: 7612875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic activity of the mesencephalic auditory center in the pigeon.
    Belekhova MG; Chudinova TV; Kenigfest NB; Veselkin NP
    Dokl Biol Sci; 2009; 426():197-200. PubMed ID: 19650314
    [No Abstract]   [Full Text] [Related]  

  • 15. Distinction of neurochemistry between the cores and their shells of auditory nuclei in tetrapod species.
    Zeng S; Li J; Zhang X; Zuo M
    Brain Behav Evol; 2007; 70(1):1-20. PubMed ID: 17389792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic activity of the central and peripheral regions of mesencephalic auditory center of reptiles.
    Belekhova MG; Kenigfest NB; Chudinova TV; Vesselkin NP
    Dokl Biol Sci; 2006; 411():491-4. PubMed ID: 17425049
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative analysis of neurogenesis between the core and shell regions of auditory areas in the chick (Gallus gallus domesticus).
    Zeng S; Lin Y; Yang L; Zhang X; Zuo M
    Brain Res; 2008 Jun; 1216():24-37. PubMed ID: 18486109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of nitric oxide with the activity of cytosolic NADH/cytochrome c electron transport system.
    Laraspata D; Gorgoglione V; La Piana G; Palmitessa V; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 2009 Sep; 489(1-2):99-109. PubMed ID: 19653993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing.
    Reser DH; Burman KJ; Richardson KE; Spitzer MW; Rosa MG
    Eur J Neurosci; 2009 Aug; 30(4):578-92. PubMed ID: 19663937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of proton pumping in cytochrome c oxidase.
    Smirnov AY; Mourokh LG; Nori F
    J Chem Phys; 2009 Jun; 130(23):235105. PubMed ID: 19548766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.