These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 19886479)

  • 1. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.
    Gratton C; Vander Zanden MJ
    Ecology; 2009 Oct; 90(10):2689-99. PubMed ID: 19886479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying aquatic insect deposition from lake to land.
    Dreyer J; Townsend PA; Hook JC; Hoekman D; Vander Zanden MJ; Gratton C
    Ecology; 2015 Feb; 96(2):499-509. PubMed ID: 26240871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects.
    Martin-Creuzburg D; Kowarik C; Straile D
    Sci Total Environ; 2017 Jan; 577():174-182. PubMed ID: 27810302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing spatial deposition of aquatic subsidies by insects emerging from agricultural streams.
    Raitif J; Roussel JM; Olmos M; Piscart C; Plantegenest M
    Sci Total Environ; 2022 Sep; 837():155686. PubMed ID: 35523331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape.
    Raitif J; Plantegenest M; Agator O; Piscart C; Roussel JM
    Sci Total Environ; 2018 Dec; 644():594-601. PubMed ID: 29990909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web.
    Bartrons M; Gratton C; Spiesman BJ; Vander Zanden MJ
    Ecol Appl; 2015 Jan; 25(1):151-9. PubMed ID: 26255364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroinvertebrate production and food web energetics in an industrially contaminated stream.
    Runck C
    Ecol Appl; 2007 Apr; 17(3):740-53. PubMed ID: 17494393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling.
    Huotari J; Nykänen H; Forsius M; Arvola L
    Glob Chang Biol; 2013 Dec; 19(12):3607-20. PubMed ID: 23893508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecosystem linkages revealed by experimental lake-derived isotope signal in heathland food webs.
    Hoekman D; Bartrons M; Gratton C
    Oecologia; 2012 Nov; 170(3):735-43. PubMed ID: 22526944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of emergent aquatic insects on bat foraging in a riparian forest.
    Fukui D; Murakami M; Nakano S; Aoi T
    J Anim Ecol; 2006 Nov; 75(6):1252-8. PubMed ID: 17032357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lakes, wetlands, and streams as predictors of land use/cover distribution.
    Walsh SE; Soranno PA; Rutledge DT
    Environ Manage; 2003 Feb; 31(2):198-214. PubMed ID: 12520376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely.
    Brett MT; Arhonditsis GB; Chandra S; Kainz MJ
    PLoS One; 2012; 7(6):e39508. PubMed ID: 22761808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifting stream planform state decreases stream productivity yet increases riparian animal production.
    Venarsky MP; Walters DM; Hall RO; Livers B; Wohl E
    Oecologia; 2018 May; 187(1):167-180. PubMed ID: 29511855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warming of aquatic ecosystems disrupts aquatic-terrestrial linkages in the tropics.
    Nash LN; Antiqueira PAP; Romero GQ; de Omena PM; Kratina P
    J Anim Ecol; 2021 Jul; 90(7):1623-1634. PubMed ID: 33955003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing donor ecosystem productivity decreases terrestrial consumer reliance on a stream resource subsidy.
    Davis JM; Rosemond AD; Small GE
    Oecologia; 2011 Nov; 167(3):821-34. PubMed ID: 21647783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?
    Pilla RM; Griffiths NA; Gu L; Kao SC; McManamay R; Ricciuto DM; Shi X
    Glob Chang Biol; 2022 Oct; 28(19):5601-5629. PubMed ID: 35856254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model.
    Solomon CT; Carpenter SR; Clayton MK; Cole JJ; Coloso JJ; Pace ML; Zanden MJ; Weidel BC
    Ecology; 2011 May; 92(5):1115-25. PubMed ID: 21661572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use.
    Caldwell TJ; Chandra S; Feher K; Simmons JB; Hogan Z
    Glob Chang Biol; 2020 Oct; 26(10):5475-5491. PubMed ID: 32602183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient cycling by fish supports relatively more primary production as lake productivity increases.
    Vanni MJ; Bowling AM; Dickman EM; Hale RS; Higgins KA; Horgan MJ; Knoll LB; Renwick WH; Stein RA
    Ecology; 2006 Jul; 87(7):1696-709. PubMed ID: 16922320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.