These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19886504)

  • 1. Estimating habitat selection when GPS fix success is less than 100%.
    Nielson RM; Manly BF; McDonald LL; Sawyer H; McDonald TL
    Ecology; 2009 Oct; 90(10):2956-62. PubMed ID: 19886504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.
    Byrne ME; Clint McCoy J; Hinton JW; Chamberlain MJ; Collier BA
    J Anim Ecol; 2014 Sep; 83(5):1234-43. PubMed ID: 24460723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis.
    Williams DM; Dechen Quinn A; Porter WF
    PLoS One; 2012; 7(11):e48439. PubMed ID: 23144884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.
    Delgiudice GD; Fieberg JR; Sampson BA
    PLoS One; 2013; 8(6):e65368. PubMed ID: 23785421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates.
    Mitchell LJ; White PCL; Arnold KE
    PLoS One; 2019; 14(7):e0219357. PubMed ID: 31291318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical guidance on characterizing availability in resource selection functions under a use-availability design.
    Northrup JM; Hooten MB; Anderson CR; Wittemyer G
    Ecology; 2013 Jul; 94(7):1456-63. PubMed ID: 23951705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Familiarity breeds contempt: combining proximity loggers and GPS reveals female white-tailed deer (Odocoileus virginianus) avoiding close contact with neighbors.
    Tosa MI; Schauber EM; Nielsen CK
    J Wildl Dis; 2015 Jan; 51(1):79-88. PubMed ID: 25398000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements.
    Forin-Wiart MA; Hubert P; Sirguey P; Poulle ML
    PLoS One; 2015; 10(6):e0129271. PubMed ID: 26086958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of individual biological traits on GPS fix-loss errors in wild bird tracking.
    García-Jiménez R; Margalida A; Pérez-García JM
    Sci Rep; 2020 Nov; 10(1):19621. PubMed ID: 33184309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of GPS units for deployment on semiaquatic animals.
    Schlippe Justicia L; Rosell F; Mayer M
    PLoS One; 2018; 13(12):e0207938. PubMed ID: 30521569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data.
    Frair JL; Fieberg J; Hebblewhite M; Cagnacci F; DeCesare NJ; Pedrotti L
    Philos Trans R Soc Lond B Biol Sci; 2010 Jul; 365(1550):2187-200. PubMed ID: 20566496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach.
    Recio MR; Mathieu R; Denys P; Sirguey P; Seddon PJ
    PLoS One; 2011; 6(12):e28225. PubMed ID: 22163286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement is the glue connecting home ranges and habitat selection.
    Van Moorter B; Rolandsen CM; Basille M; Gaillard JM
    J Anim Ecol; 2016 Jan; 85(1):21-31. PubMed ID: 25980987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of micro-GPS receivers for tracking small-bodied mammals.
    McMahon LA; Rachlow JL; Shipley LA; Forbey JS; Johnson TR; Olsoy PJ
    PLoS One; 2017; 12(3):e0173185. PubMed ID: 28301495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A piecewise linear modeling approach for testing competing theories of habitat selection: an example with mule deer in northern winter ranges.
    Manning JA; Garton EO
    Oecologia; 2013 Jul; 172(3):725-35. PubMed ID: 23203509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climatically driven changes in primary production propagate through trophic levels.
    Stoner DC; Sexton JO; Choate DM; Nagol J; Bernales HH; Sims SA; Ironside KE; Longshore KM; Edwards TC
    Glob Chang Biol; 2018 Oct; 24(10):4453-4463. PubMed ID: 30088318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional attributes of ungulate migration: landscape features facilitate movement and access to forage.
    Monteith KL; Hayes MM; Kauffman MJ; Copeland HE; Sawyer H
    Ecol Appl; 2018 Dec; 28(8):2153-2164. PubMed ID: 30329189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.
    Bjørneraas K; Herfindal I; Solberg EJ; Sæther BE; van Moorter B; Rolandsen CM
    Oecologia; 2012 Jan; 168(1):231-43. PubMed ID: 21766188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal scales, trade-offs, and functional responses in red deer habitat selection.
    Godvik IM; Loe LE; Vik JO; Veiberg V; Langvatn R; Mysterud A
    Ecology; 2009 Mar; 90(3):699-710. PubMed ID: 19341140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement reveals scale dependence in habitat selection of a large ungulate.
    Northrup JM; Anderson CR; Hooten MB; Wittemyer G
    Ecol Appl; 2016 Dec; 26(8):2744-2755. PubMed ID: 27859842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.