These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 19886694)

  • 1. Efficient nucleic acid detection by templated reductive quencher release.
    Franzini RM; Kool ET
    J Am Chem Soc; 2009 Nov; 131(44):16021-3. PubMed ID: 19886694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double displacement: An improved bioorthogonal reaction strategy for templated nucleic acid detection.
    Kleinbaum DJ; Miller GP; Kool ET
    Bioconjug Chem; 2010 Jun; 21(6):1115-20. PubMed ID: 20509625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved templated fluorogenic probes enhance the analysis of closely related pathogenic bacteria by microscopy and flow cytometry.
    Franzini RM; Kool ET
    Bioconjug Chem; 2011 Sep; 22(9):1869-77. PubMed ID: 21870777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two successive reactions on a DNA template: a strategy for improving background fluorescence and specificity in nucleic acid detection.
    Franzini RM; Kool ET
    Chemistry; 2011 Feb; 17(7):2168-75. PubMed ID: 21294182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 7-Azidomethoxy-coumarins as profluorophores for templated nucleic acid detection.
    Franzini RM; Kool ET
    Chembiochem; 2008 Dec; 9(18):2981-8. PubMed ID: 19035374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenched auto-ligating DNAs: multicolor identification of nucleic acids at single nucleotide resolution.
    Sando S; Abe H; Kool ET
    J Am Chem Soc; 2004 Feb; 126(4):1081-7. PubMed ID: 14746476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time, sequence-specific detection of nucleic acids during strand displacement amplification.
    Nadeau JG; Pitner JB; Linn CP; Schram JL; Dean CH; Nycz CM
    Anal Biochem; 1999 Dec; 276(2):177-87. PubMed ID: 10603241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New, stronger nucleophiles for nucleic acid-templated chemistry: Synthesis and application in fluorescence detection of cellular RNA.
    Miller GP; Silverman AP; Kool ET
    Bioorg Med Chem; 2008 Jan; 16(1):56-64. PubMed ID: 17502150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleic acid templated reactions: consequences of probe reactivity and readout strategy for amplified signaling and sequence selectivity.
    Grossmann TN; Seitz O
    Chemistry; 2009 Jul; 15(27):6723-30. PubMed ID: 19496097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Templated Timer Probes for Multiplexed Sensing.
    Deng Y; Ma L; Han Q; Yu C; Johnson-Buck A; Su X
    Nano Lett; 2020 Apr; 20(4):2688-2694. PubMed ID: 32119561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using molecular beacons for sensitive fluorescence assays of the enzymatic cleavage of nucleic acids.
    Yang CJ; Li JJ; Tan W
    Methods Mol Biol; 2006; 335():71-81. PubMed ID: 16785621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Analysis of Rate Constants and Turnover Frequency in Nucleic Acid-Templated Reactions: Reaching Terminal Velocity.
    Chang D; Lindberg E; Winssinger N
    J Am Chem Soc; 2017 Feb; 139(4):1444-1447. PubMed ID: 28099008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fluorescence melting curve analysis for dual DNA detection using single peptide nucleic acid probe.
    Ahn JJ; Lee SY; Hong JY; Kim Y; Kim GW; Hwang SY
    Biotechnol Prog; 2015; 31(3):730-5. PubMed ID: 25644129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid miRNA imaging in cells using fluorogenic templated Staudinger reaction between PNA-based probes.
    Gorska K; Winssinger N
    Methods Mol Biol; 2014; 1050():179-92. PubMed ID: 24297360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligonucleotide-templated reactions for sensing nucleic acids.
    Shibata A; Abe H; Ito Y
    Molecules; 2012 Feb; 17(3):2446-63. PubMed ID: 22374329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triphenylphosphinecarboxamide: an effective reagent for the reduction of azides and its application to nucleic acid detection.
    Saneyoshi H; Ochikubo T; Mashimo T; Hatano K; Ito Y; Abe H
    Org Lett; 2014 Jan; 16(1):30-3. PubMed ID: 24299163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonenzymatic DNA ligation in Escherichia coli cells.
    Sando S; Kool ET
    Nucleic Acids Res Suppl; 2002; (2):121-2. PubMed ID: 12903135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reduction-triggered fluorescence probe for sensing nucleic acids.
    Abe H; Wang J; Furukawa K; Oki K; Uda M; Tsuneda S; Ito Y
    Bioconjug Chem; 2008 Jun; 19(6):1219-26. PubMed ID: 18476727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification.
    Ge J; Bai DM; -Geng X; Hu YL; Cai QY; Xing K; Zhang L; Li ZH
    Mikrochim Acta; 2018 Jan; 185(2):105. PubMed ID: 29594730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choosing reporter-quencher pairs for efficient quenching through formation of intramolecular dimers.
    Johansson MK
    Methods Mol Biol; 2006; 335():17-29. PubMed ID: 16785617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.