BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 1988683)

  • 1. Structural analysis of the peptidyl transferase region in ribosomal RNA of the eukaryote Xenopus laevis.
    Stebbins-Boaz B; Gerbi SA
    J Mol Biol; 1991 Jan; 217(1):93-112. PubMed ID: 1988683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the conformational changes in 5.8S, 18S and 28S rRNA upon association of derived subunits into complete 80S ribosomes.
    Holmberg L; Melander Y; Nygård O
    Nucleic Acids Res; 1994 Jul; 22(14):2776-83. PubMed ID: 8052533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction sites of ribosome-bound eukaryotic elongation factor 2 in 18S and 28S rRNA.
    Holmberg L; Nygård O
    Biochemistry; 1994 Dec; 33(50):15159-67. PubMed ID: 7999776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension.
    Moazed D; Stern S; Noller HF
    J Mol Biol; 1986 Feb; 187(3):399-416. PubMed ID: 2422386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center.
    Yanshina DD; Bulygin KN; Malygin AA; Karpova GG
    FEBS J; 2015 Apr; 282(8):1554-66. PubMed ID: 25702831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ.
    Holmberg L; Melander Y; Nygård O
    Nucleic Acids Res; 1994 Apr; 22(8):1374-82. PubMed ID: 8190627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical secondary structure probing of two highly methylated regions in Xenopus laevis 28S ribosomal RNA.
    Ajuh PM; Maden EB
    Biochim Biophys Acta; 1994 Sep; 1219(1):89-97. PubMed ID: 8086482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposed secondary structure of eukaryote specific expansion segment 15 in 28S rRNA from mice, rats, and rabbits.
    Larsson SL; Nygård O
    Biochemistry; 2001 Mar; 40(10):3222-31. PubMed ID: 11258939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure analysis of the 5' external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae.
    Yeh LC; Lee JC
    J Mol Biol; 1992 Dec; 228(3):827-39. PubMed ID: 1469716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications.
    Clark CG; Tague BW; Ware VC; Gerbi SA
    Nucleic Acids Res; 1984 Aug; 12(15):6197-220. PubMed ID: 6147812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible interaction sites of mRNA, tRNA, translation factors and the nascent peptide in 5S, 5.8S and 28S rRNA in in vivo assembled eukaryotic ribosomal complexes.
    Sloma MS; Nygård O
    Biochim Biophys Acta; 2001 Oct; 1521(1-3):30-8. PubMed ID: 11690633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical probing of a virginiamycin M-promoted conformational change of the peptidyl-transferase domain.
    Vannuffel P; Di Giambattista M; Cocito C
    Nucleic Acids Res; 1994 Oct; 22(21):4449-53. PubMed ID: 7971275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA.
    Khaitovich P; Mankin AS
    J Mol Biol; 1999 Sep; 291(5):1025-34. PubMed ID: 10518940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution.
    Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R
    J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing.
    Balzer M; Wagner R
    J Mol Biol; 1998 Feb; 276(3):547-57. PubMed ID: 9551096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus.
    Alford RL; Honda S; Lawrence CB; Belmont JW
    Virology; 1991 Aug; 183(2):611-9. PubMed ID: 1853563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast precursor ribosomal RNA. Molecular cloning and probing the higher-order structure of the internal transcribed spacer I by kethoxal and dimethylsulfate modification.
    Thweatt R; Lee JC
    J Mol Biol; 1990 Jan; 211(2):305-20. PubMed ID: 2407850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.