These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19886864)

  • 1. Structural insights into the catalytic mechanism of Trypanosoma cruzi GPXI (glutathione peroxidase-like enzyme I).
    Patel S; Hussain S; Harris R; Sardiwal S; Kelly JM; Wilkinson SR; Driscoll PC; Djordjevic S
    Biochem J; 2010 Jan; 425(3):513-22. PubMed ID: 19886864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin.
    Wilkinson SR; Meyer DJ; Taylor MC; Bromley EV; Miles MA; Kelly JM
    J Biol Chem; 2002 May; 277(19):17062-71. PubMed ID: 11842085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox metabolism in Trypanosoma cruzi: functional characterization of tryparedoxins revisited.
    Arias DG; Marquez VE; Chiribao ML; Gadelha FR; Robello C; Iglesias AA; Guerrero SA
    Free Radic Biol Med; 2013 Oct; 63():65-77. PubMed ID: 23665397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathionylation of trypanosomal thiol redox proteins.
    Melchers J; Dirdjaja N; Ruppert T; Krauth-Siegel RL
    J Biol Chem; 2007 Mar; 282(12):8678-94. PubMed ID: 17242409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
    Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R
    Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer.
    Martinez A; Peluffo G; Petruk AA; Hugo M; Piñeyro D; Demicheli V; Moreno DM; Lima A; Batthyány C; Durán R; Robello C; Martí MA; Larrieux N; Buschiazzo A; Trujillo M; Radi R; Piacenza L
    J Biol Chem; 2014 May; 289(18):12760-78. PubMed ID: 24616096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The trypanothione-thiol system in Trypanosoma cruzi as a key antioxidant mechanism against peroxynitrite-mediated cytotoxicity.
    Thomson L; Denicola A; Radi R
    Arch Biochem Biophys; 2003 Apr; 412(1):55-64. PubMed ID: 12646268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of the glutathione peroxidase-type tryparedoxin peroxidase of Trypanosoma brucei.
    Schlecker T; Comini MA; Melchers J; Ruppert T; Krauth-Siegel RL
    Biochem J; 2007 Aug; 405(3):445-54. PubMed ID: 17456049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei.
    Schlecker T; Schmidt A; Dirdjaja N; Voncken F; Clayton C; Krauth-Siegel RL
    J Biol Chem; 2005 Apr; 280(15):14385-94. PubMed ID: 15664987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity.
    Wilkinson SR; Meyer DJ; Kelly JM
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):755-61. PubMed ID: 11104683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity.
    Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF
    Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4).
    Scheerer P; Borchert A; Krauss N; Wessner H; Gerth C; Höhne W; Kuhn H
    Biochemistry; 2007 Aug; 46(31):9041-9. PubMed ID: 17630701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi.
    Boveris A; Sies H; Martino EE; Docampo R; Turrens JF; Stoppani AO
    Biochem J; 1980 Jun; 188(3):643-8. PubMed ID: 7008779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for a distinct catalytic mechanism in Trypanosoma brucei tryparedoxin peroxidase.
    Melchers J; Diechtierow M; Fehér K; Sinning I; Tews I; Krauth-Siegel RL; Muhle-Goll C
    J Biol Chem; 2008 Oct; 283(44):30401-11. PubMed ID: 18684708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase.
    Maiorino M; Roveri A; Benazzi L; Bosello V; Mauri P; Toppo S; Tosatto SC; Ursini F
    J Biol Chem; 2005 Nov; 280(46):38395-402. PubMed ID: 16159880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation.
    Selles B; Hugo M; Trujillo M; Srivastava V; Wingsle G; Jacquot JP; Radi R; Rouhier N
    Biochem J; 2012 Mar; 442(2):369-80. PubMed ID: 22122405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of active site residues in the oxidant specificity of the Orp1 thiol peroxidase.
    Takanishi CL; Ma LH; Wood MJ
    Biochem Biophys Res Commun; 2010 Dec; 403(1):46-51. PubMed ID: 21036150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
    Ellis HR; Poole LB
    Biochemistry; 1997 Oct; 36(43):13349-56. PubMed ID: 9341227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase.
    Borges A; Cunningham ML; Tovar J; Fairlamb AH
    Eur J Biochem; 1995 Mar; 228(3):745-52. PubMed ID: 7737173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target.
    González-Chávez Z; Olin-Sandoval V; Rodíguez-Zavala JS; Moreno-Sánchez R; Saavedra E
    Biochim Biophys Acta; 2015 Feb; 1850(2):263-73. PubMed ID: 25450181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.