BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19886945)

  • 1. Characterizing the noncancer toxicity of mixtures using concepts from the TTC and quantitative models of uncertainty in mixture toxicity.
    Price PS; Hollnagel HM; Zabik JM
    Risk Anal; 2009 Nov; 29(11):1534-48. PubMed ID: 19886945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the chronic non-cancer effects of mixtures of migrants using Cramer classes and quantitative models of uncertainty.
    Price P; Wiltshire G
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Dec; 26(12):1547-55. PubMed ID: 19927247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of the U.S. Army's health risk assessments for oral exposure to six chemical-warfare agents. Introduction.
    J Toxicol Environ Health A; 2000 Mar; 59(5-6):281-526. PubMed ID: 10742829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining occurrence and toxicity information to identify priorities for drinking-water mixture research.
    Ryker SJ; Small MJ
    Risk Anal; 2008 Jun; 28(3):653-66. PubMed ID: 18643823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciding which chemical mixtures risk assessment methods work best for what mixtures.
    Teuschler LK
    Toxicol Appl Pharmacol; 2007 Sep; 223(2):139-47. PubMed ID: 16997340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures.
    Junghans M; Backhaus T; Faust M; Scholze M; Grimme LH
    Aquat Toxicol; 2006 Feb; 76(2):93-110. PubMed ID: 16310872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health risk assessment of drinking water contaminants in Canada: the applicability of mixture risk assessment methods.
    Krishnan K; Paterson J; Williams DT
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):179-87. PubMed ID: 9356281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: how to cumulate?
    Wilkinson CF; Christoph GR; Julien E; Kelley JM; Kronenberg J; McCarthy J; Reiss R
    Regul Toxicol Pharmacol; 2000 Feb; 31(1):30-43. PubMed ID: 10715222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment.
    Boobis A; Budinsky R; Collie S; Crofton K; Embry M; Felter S; Hertzberg R; Kopp D; Mihlan G; Mumtaz M; Price P; Solomon K; Teuschler L; Yang R; Zaleski R
    Crit Rev Toxicol; 2011 May; 41(5):369-83. PubMed ID: 21309635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode of action as a determining factor in additivity models for chemical mixture risk assessment.
    Lambert JC; Lipscomb JC
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):183-94. PubMed ID: 17804132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment.
    Barata C; Baird DJ; Nogueira AJ; Soares AM; Riva MC
    Aquat Toxicol; 2006 Jun; 78(1):1-14. PubMed ID: 16510198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of the toxicity of chemical mixtures: Theory, policy, and regulatory practice.
    McCarty LS; Borgert CJ
    Regul Toxicol Pharmacol; 2006 Jul; 45(2):119-43. PubMed ID: 16701933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can mode of action predict mixture toxicity for risk assessment?
    Borgert CJ; Quill TF; McCarty LS; Mason AM
    Toxicol Appl Pharmacol; 2004 Dec; 201(2):85-96. PubMed ID: 15541748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory investigation of the toxicity and interaction of pesticide mixtures in Daphnia magna.
    George TK; Liber K
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):64-72. PubMed ID: 17106792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach for assessing human exposures to chemical mixtures in the environment.
    Rice G; MacDonell M; Hertzberg RC; Teuschler L; Picel K; Butler J; Chang YS; Hartmann H
    Toxicol Appl Pharmacol; 2008 Nov; 233(1):126-36. PubMed ID: 18589469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling mixtures resulting from concurrent exposures to multiple sources.
    Arnold SF; Price PS;
    Toxicol Appl Pharmacol; 2007 Sep; 223(2):121-4. PubMed ID: 17258780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ratios of individual chemicals in a mixture determine the degree of joint effect: the climax hypothesis.
    Lin Z; Ping Z; Kong D; Yin K; Cai Z
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):1-8. PubMed ID: 15883676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond TPH: health-based evaluation of petroleum hydrocarbon exposures.
    Hutcheson MS; Pedersen D; Anastas ND; Fitzgerald J; Silverman D
    Regul Toxicol Pharmacol; 1996 Aug; 24(1 Pt 1):85-101. PubMed ID: 8921548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity assessment of organic contaminants: evaluation of mixture effects in model industrial mixtures using 2n full factorial design.
    Parvez S; Venkataraman C; Mukherji S
    Chemosphere; 2008 Oct; 73(7):1049-55. PubMed ID: 18789476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.