These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19887122)

  • 1. An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature.
    Peña J; Román J; Victoria Cabañas M; Vallet-Regí M
    Acta Biomater; 2010 Apr; 6(4):1288-96. PubMed ID: 19887122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo.
    Feng B; Jinkang Z; Zhen W; Jianxi L; Jiang C; Jian L; Guolin M; Xin D
    Biomed Mater; 2011 Feb; 6(1):015007. PubMed ID: 21206002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration.
    Renghini C; Komlev V; Fiori F; Verné E; Baino F; Vitale-Brovarone C
    Acta Biomater; 2009 May; 5(4):1328-37. PubMed ID: 19038589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique.
    Wu ZY; Hill RG; Yue S; Nightingale D; Lee PD; Jones JR
    Acta Biomater; 2011 Apr; 7(4):1807-16. PubMed ID: 21130188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically structured titanium foams for tissue scaffold applications.
    Singh R; Lee PD; Jones JR; Poologasundarampillai G; Post T; Lindley TC; Dashwood RJ
    Acta Biomater; 2010 Dec; 6(12):4596-604. PubMed ID: 20601241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration.
    Puértolas JA; Vadillo JL; Sánchez-Salcedo S; Nieto A; Gómez-Barrena E; Vallet-Regí M
    Acta Biomater; 2011 Feb; 7(2):841-7. PubMed ID: 20709633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical pore structure of calcium phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods.
    Sánchez-Salcedo S; Werner J; Vallet-Regí M
    Acta Biomater; 2008 Jul; 4(4):913-22. PubMed ID: 18346947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.
    Cabañas MV; Peña J; Román J; Vallet-Regí M
    J Biomed Mater Res A; 2006 Sep; 78(3):508-14. PubMed ID: 16736486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration.
    Lim TC; Chian KS; Leong KF
    J Biomed Mater Res A; 2010 Sep; 94(4):1303-11. PubMed ID: 20694998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds.
    Román J; Cabañas MV; Peña J; Vallet-Regí M
    Sci Technol Adv Mater; 2011 Aug; 12(4):045003. PubMed ID: 27877422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring vancomycin release from beta-TCP/agarose scaffolds.
    Cabañas MV; Peña J; Román J; Vallet-Regí M
    Eur J Pharm Sci; 2009 Jun; 37(3-4):249-56. PubMed ID: 19491012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds.
    Christenson EM; Soofi W; Holm JL; Cameron NR; Mikos AG
    Biomacromolecules; 2007 Dec; 8(12):3806-14. PubMed ID: 17979240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth.
    Jones AC; Arns CH; Hutmacher DW; Milthorpe BK; Sheppard AP; Knackstedt MA
    Biomaterials; 2009 Mar; 30(7):1440-51. PubMed ID: 19091398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimized beta-tricalcium phosphate and agarose scaffold fabrication technique.
    Román J; Cabañas MV; Peña J; Doadrio JC; Vallet-Regí M
    J Biomed Mater Res A; 2008 Jan; 84(1):99-107. PubMed ID: 17600331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.