BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19887454)

  • 1. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation.
    Xiao Z; Zhang S; Cao L; Qiu N; David V; Quarles LD
    J Biol Chem; 2010 Jan; 285(2):1177-87. PubMed ID: 19887454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional mesenchymal disruption of pkd1 results in osteopenia and polycystic kidney disease.
    Qiu N; Xiao Z; Cao L; David V; Quarles LD
    PLoS One; 2012; 7(9):e46038. PubMed ID: 23029375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity.
    Xiao Z; Cao L; Liang Y; Huang J; Stern AR; Dallas M; Johnson M; Quarles LD
    PLoS One; 2014; 9(12):e114198. PubMed ID: 25464512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice.
    Xiao Z; Dallas M; Qiu N; Nicolella D; Cao L; Johnson M; Bonewald L; Quarles LD
    FASEB J; 2011 Jul; 25(7):2418-32. PubMed ID: 21454365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia.
    Qiu N; Xiao Z; Cao L; Buechel MM; David V; Roan E; Quarles LD
    J Cell Sci; 2012 Apr; 125(Pt 8):1945-57. PubMed ID: 22357948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis.
    Qiu N; Cao L; David V; Quarles LD; Xiao Z
    PLoS One; 2010 Dec; 5(12):e15240. PubMed ID: 21151991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II.
    Xiao Z; Zhang S; Magenheimer BS; Luo J; Quarles LD
    J Biol Chem; 2008 May; 283(18):12624-34. PubMed ID: 18321855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic interactions between polycystin-1 and Wwtr1 in osteoblasts define a novel mechanosensing mechanism regulating bone formation in mice.
    Xiao Z; Cao L; Smith MD; Li H; Li W; Smith JC; Quarles LD
    Bone Res; 2023 Oct; 11(1):57. PubMed ID: 37884491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hairy and Enhancer of Split-related with YRPW motif (HEY)2 regulates bone remodeling in mice.
    Zanotti S; Canalis E
    J Biol Chem; 2013 Jul; 288(30):21547-57. PubMed ID: 23782701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast lineage-specific effects of notch activation in the skeleton.
    Canalis E; Parker K; Feng JQ; Zanotti S
    Endocrinology; 2013 Feb; 154(2):623-34. PubMed ID: 23275471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development.
    Zhu W; Liang G; Huang Z; Doty SB; Boskey AL
    J Biol Chem; 2011 Jul; 286(30):26794-805. PubMed ID: 21636574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice.
    Takarada T; Hinoi E; Nakazato R; Ochi H; Xu C; Tsuchikane A; Takeda S; Karsenty G; Abe T; Kiyonari H; Yoneda Y
    J Bone Miner Res; 2013 Oct; 28(10):2064-9. PubMed ID: 23553905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast menin regulates bone mass in vivo.
    Kanazawa I; Canaff L; Abi Rafeh J; Angrula A; Li J; Riddle RC; Boraschi-Diaz I; Komarova SV; Clemens TL; Murshed M; Hendy GN
    J Biol Chem; 2015 Feb; 290(7):3910-24. PubMed ID: 25538250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity.
    Hesse E; Saito H; Kiviranta R; Correa D; Yamana K; Neff L; Toben D; Duda G; Atfi A; Geoffroy V; Horne WC; Baron R
    J Cell Biol; 2010 Dec; 191(7):1271-83. PubMed ID: 21173110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.
    Canalis E; Zanotti S; Beamer WG; Economides AN; Smerdel-Ramoya A
    Endocrinology; 2010 Aug; 151(8):3490-501. PubMed ID: 20534727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal overexpression of connective tissue growth factor impairs bone formation and causes osteopenia.
    Smerdel-Ramoya A; Zanotti S; Stadmeyer L; Durant D; Canalis E
    Endocrinology; 2008 Sep; 149(9):4374-81. PubMed ID: 18535099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype.
    Shekaran A; Shoemaker JT; Kavanaugh TE; Lin AS; LaPlaca MC; Fan Y; Guldberg RE; GarcĂ­a AJ
    Bone; 2014 Nov; 68():131-41. PubMed ID: 25183373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance.
    Baek WY; de Crombrugghe B; Kim JE
    Bone; 2010 Apr; 46(4):920-8. PubMed ID: 20026264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notch inhibits osteoblast differentiation and causes osteopenia.
    Zanotti S; Smerdel-Ramoya A; Stadmeyer L; Durant D; Radtke F; Canalis E
    Endocrinology; 2008 Aug; 149(8):3890-9. PubMed ID: 18420737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss.
    Ramdani G; Schall N; Kalyanaraman H; Wahwah N; Moheize S; Lee JJ; Sah RL; Pfeifer A; Casteel DE; Pilz RB
    J Endocrinol; 2018 Sep; 238(3):203-219. PubMed ID: 29914933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.