BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19887471)

  • 1. Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the {alpha}-crystallin domain in the genus Rhododendron (Ericaceae).
    Liao PC; Lin TP; Lan WC; Chung JD; Hwang SY
    Ann Bot; 2010 Jan; 105(1):57-69. PubMed ID: 19887471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent evolution of the chloroplast small heat shock protein gene in the genera Rhododendron (Ericaceae) and Machilus (Lauraceae).
    Wu ML; Lin TP; Lin MY; Cheng YP; Hwang SY
    Ann Bot; 2007 Mar; 99(3):461-75. PubMed ID: 17293350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants.
    Bondino HG; Valle EM; Ten Have A
    Planta; 2012 Jun; 235(6):1299-313. PubMed ID: 22210597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns.
    Waters ER; Aevermann BD; Sanders-Reed Z
    Cell Stress Chaperones; 2008; 13(2):127-42. PubMed ID: 18759000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants.
    Shakeel SN; Ul Haq N; Heckathorn S; Luthe DS
    Plant Cell Rep; 2012 Oct; 31(10):1943-57. PubMed ID: 22797908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution, conflict and rate shifts: insights from a densely sampled plastome phylogeny for Rhododendron (Ericaceae).
    Mo ZQ; Fu CN; Zhu MS; Milne RI; Yang JB; Cai J; Qin HT; Zheng W; Hollingsworth PM; Li DZ; Gao LM
    Ann Bot; 2022 Nov; 130(5):687-701. PubMed ID: 36087101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.
    Wang X; Wang R; Ma C; Shi X; Liu Z; Wang Z; Sun Q; Cao J; Xu S
    Sci Rep; 2017 May; 7(1):2581. PubMed ID: 28566710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel small heat shock protein of Haliotis discus hannai: characterization, structure modeling, and expression profiles under environmental stresses.
    Sun BG; Hu YH
    Cell Stress Chaperones; 2016 Jul; 21(4):583-91. PubMed ID: 27084408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution.
    Song W; Qin Y; Zhu Y; Yin G; Wu N; Li Y; Hu Y
    BMC Evol Biol; 2014 Jun; 14():124. PubMed ID: 24913827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recent evolution of a pseudogene: diversity and divergence of a mitochondria-localized small heat shock protein in Arabidopsis thaliana.
    Waters ER; Nguyen SL; Eskandar R; Behan J; Sanders-Reed Z
    Genome; 2008 Mar; 51(3):177-86. PubMed ID: 18356953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sHSPdb: a database for the analysis of small Heat Shock Proteins.
    Jaspard E; Hunault G
    BMC Plant Biol; 2016 Jun; 16(1):135. PubMed ID: 27297221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses.
    Waters ER; Vierling E
    Mol Biol Evol; 1999 Jan; 16(1):127-39. PubMed ID: 10331257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication.
    Yang X; Tuskan GA; Cheng MZ
    Plant Physiol; 2006 Nov; 142(3):820-30. PubMed ID: 16980566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia.
    Qiu Z; Bossier P; Wang X; Bojikova-Fournier S; MacRae TH
    Genomics; 2006 Aug; 88(2):230-40. PubMed ID: 16571370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.
    Nicosia A; Maggio T; Mazzola S; Gianguzza F; Cuttitta A; Costa S
    PLoS One; 2014; 9(9):e105908. PubMed ID: 25251681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two small heat shock protein genes in Apis cerana cerana: characterization, regulation, and developmental expression.
    Liu Z; Yao P; Guo X; Xu B
    Gene; 2014 Jul; 545(2):205-14. PubMed ID: 24835315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma cruzi SHSP16: Characterization of an alpha-crystallin small heat shock protein.
    Pérez-Morales D; Ostoa-Saloma P; Espinoza B
    Exp Parasitol; 2009 Oct; 123(2):182-9. PubMed ID: 19595996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence.
    Zhang JL; Zhang CQ; Gao LM; Yang JB; Li HT
    J Plant Res; 2007 May; 120(3):457-63. PubMed ID: 17393071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary diversity of vertebrate small heat shock proteins.
    Franck E; Madsen O; van Rheede T; Ricard G; Huynen MA; de Jong WW
    J Mol Evol; 2004 Dec; 59(6):792-805. PubMed ID: 15599511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular evolution of the small heat-shock proteins in plants.
    Waters ER
    Genetics; 1995 Oct; 141(2):785-95. PubMed ID: 8647410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.