BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19887574)

  • 21. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation.
    Moriguchi T; Yamamoto M
    Int J Hematol; 2014 Nov; 100(5):417-24. PubMed ID: 24638828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1.
    Fujiwara T; Sasaki K; Saito K; Hatta S; Ichikawa S; Kobayashi M; Okitsu Y; Fukuhara N; Onishi Y; Harigae H
    Biochem Biophys Res Commun; 2017 Apr; 485(2):380-387. PubMed ID: 28216155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.
    Pimkin M; Kossenkov AV; Mishra T; Morrissey CS; Wu W; Keller CA; Blobel GA; Lee D; Beer MA; Hardison RC; Weiss MJ
    Genome Res; 2014 Dec; 24(12):1932-44. PubMed ID: 25319996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis.
    Papadopoulos GL; Karkoulia E; Tsamardinos I; Porcher C; Ragoussis J; Bungert J; Strouboulis J
    Nucleic Acids Res; 2013 May; 41(9):4938-48. PubMed ID: 23519611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CDC6 expression is regulated by lineage-specific transcription factor GATA1.
    Fernández-Morales B; Pavón L; Calés C
    Cell Cycle; 2012 Aug; 11(16):3055-66. PubMed ID: 22871742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Meis1, Hi1α, and GATA1 are integrated into a hierarchical regulatory network to mediate primitive erythropoiesis.
    Chung HY; Lin BA; Lin YX; Chang CW; Tzou WS; Pei TW; Hu CH
    FASEB J; 2021 Oct; 35(10):e21915. PubMed ID: 34496088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a novel putative mitochondrial protein FAM210B associated with erythroid differentiation.
    Kondo A; Fujiwara T; Okitsu Y; Fukuhara N; Onishi Y; Nakamura Y; Sawada K; Harigae H
    Int J Hematol; 2016 Apr; 103(4):387-95. PubMed ID: 26968549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of transcriptional corepressor ETO2 in erythroid cells.
    Fujiwara T; Alqadi YW; Okitsu Y; Fukuhara N; Onishi Y; Ishizawa K; Harigae H
    Exp Hematol; 2013 Mar; 41(3):303-15.e1. PubMed ID: 23127762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Wide Organization of GATA1 and TAL1 Determined at High Resolution.
    Han GC; Vinayachandran V; Bataille AR; Park B; Chan-Salis KY; Keller CA; Long M; Mahony S; Hardison RC; Pugh BF
    Mol Cell Biol; 2016 Jan; 36(1):157-72. PubMed ID: 26503782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GATA-1 utilizes Ikaros and polycomb repressive complex 2 to suppress Hes1 and to promote erythropoiesis.
    Ross J; Mavoungou L; Bresnick EH; Milot E
    Mol Cell Biol; 2012 Sep; 32(18):3624-38. PubMed ID: 22778136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells.
    Kassouf MT; Hughes JR; Taylor S; McGowan SJ; Soneji S; Green AL; Vyas P; Porcher C
    Genome Res; 2010 Aug; 20(8):1064-83. PubMed ID: 20566737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis.
    Wang F; Zhu Y; Guo L; Dong L; Liu H; Yin H; Zhang Z; Li Y; Liu C; Ma Y; Song W; He A; Wang Q; Wang L; Zhang J; Li J; Yu J
    Nucleic Acids Res; 2014 Jan; 42(1):442-57. PubMed ID: 24049083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of disease-causing GATA1 mutations in murine gene complementation systems.
    Campbell AE; Wilkinson-White L; Mackay JP; Matthews JM; Blobel GA
    Blood; 2013 Jun; 121(26):5218-27. PubMed ID: 23704091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation.
    Murphy ZC; Murphy K; Myers J; Getman M; Couch T; Schulz VP; Lezon-Geyda K; Palumbo C; Yan H; Mohandas N; Gallagher PG; Steiner LA
    Blood; 2021 Nov; 138(18):1740-1756. PubMed ID: 34075391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture.
    Mahajan MC; Karmakar S; Newburger PE; Krause DS; Weissman SM
    Exp Hematol; 2009 Oct; 37(10):1143-1156.e3. PubMed ID: 19607874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of biologically relevant enhancers in human erythroid cells.
    Su MY; Steiner LA; Bogardus H; Mishra T; Schulz VP; Hardison RC; Gallagher PG
    J Biol Chem; 2013 Mar; 288(12):8433-8444. PubMed ID: 23341446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ldb1 complexes: the new master regulators of erythroid gene transcription.
    Love PE; Warzecha C; Li L
    Trends Genet; 2014 Jan; 30(1):1-9. PubMed ID: 24290192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells.
    Varricchio L; Dell'Aversana C; Nebbioso A; Migliaccio G; Altucci L; Mai A; Grazzini G; Bieker JJ; Migliaccio AR
    Int J Biochem Cell Biol; 2014 May; 50():112-22. PubMed ID: 24594363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis.
    Maeda T; Ito K; Merghoub T; Poliseno L; Hobbs RM; Wang G; Dong L; Maeda M; Dore LC; Zelent A; Luzzatto L; Teruya-Feldstein J; Weiss MJ; Pandolfi PP
    Dev Cell; 2009 Oct; 17(4):527-40. PubMed ID: 19853566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.
    Papadopoulos P; Gutiérrez L; Demmers J; Scheer E; Pourfarzad F; Papageorgiou DN; Karkoulia E; Strouboulis J; van de Werken HJ; van der Linden R; Vandenberghe P; Dekkers DH; Philipsen S; Grosveld F; Tora L
    Mol Cell Biol; 2015 Jun; 35(12):2103-18. PubMed ID: 25870109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.