BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19887681)

  • 1. Activation of a bacterial virulence protein by the GTPase RhoA.
    Christen M; Coye LH; Hontz JS; LaRock DL; Pfuetzner RA; Megha ; Miller SI
    Sci Signal; 2009 Nov; 2(95):ra71. PubMed ID: 19887681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Salmonella typhimurium-translocated glycerophospholipid:cholesterol acyltransferase promotes virulence by binding to the RhoA protein switch regions.
    LaRock DL; Brzovic PS; Levin I; Blanc MP; Miller SI
    J Biol Chem; 2012 Aug; 287(35):29654-63. PubMed ID: 22740689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salmonella modulation of the phagosome membrane, role of SseJ.
    Kolodziejek AM; Miller SI
    Cell Microbiol; 2015 Mar; 17(3):333-41. PubMed ID: 25620407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor.
    Dukuzumuremyi JM; Rosqvist R; Hallberg B; Akerström B; Wolf-Watz H; Schesser K
    J Biol Chem; 2000 Nov; 275(45):35281-90. PubMed ID: 10950948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling.
    Stones DH; Krachler AM
    Small GTPases; 2015; 6(3):153-6. PubMed ID: 26156628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation.
    Ohlson MB; Huang Z; Alto NM; Blanc MP; Dixon JE; Chai J; Miller SI
    Cell Host Microbe; 2008 Nov; 4(5):434-46. PubMed ID: 18996344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.
    Zhang B; Zhang Y; Wang Z; Zheng Y
    J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling.
    Boissier P; Huynh-Do U
    Cell Signal; 2014 Mar; 26(3):483-91. PubMed ID: 24308970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p190RhoGAPs, the
    Héraud C; Pinault M; Lagrée V; Moreau V
    Cells; 2019 Apr; 8(4):. PubMed ID: 31013840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of a RhoA/myosin II-dependent but Arp2/3 complex-independent pathway facilitates Salmonella invasion.
    Hänisch J; Kölm R; Wozniczka M; Bumann D; Rottner K; Stradal TE
    Cell Host Microbe; 2011 Apr; 9(4):273-85. PubMed ID: 21501827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of protein kinase C isozymes with Rho GTPases.
    Slater SJ; Seiz JL; Stagliano BA; Stubbs CD
    Biochemistry; 2001 Apr; 40(14):4437-45. PubMed ID: 11284700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.
    Weber MM; Faris R; van Schaik EJ; McLachlan JT; Wright WU; Tellez A; Roman VA; Rowin K; Case ED; Luo ZQ; Samuel JE
    Infect Immun; 2016 Sep; 84(9):2524-33. PubMed ID: 27324482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors.
    Prehna G; Ivanov MI; Bliska JB; Stebbins CE
    Cell; 2006 Sep; 126(5):869-80. PubMed ID: 16959567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graf1 Controls the Growth of Human Parainfluenza Virus Type 2 through Inactivation of RhoA Signaling.
    Ohta K; Goto H; Matsumoto Y; Yumine N; Tsurudome M; Nishio M
    J Virol; 2016 Oct; 90(20):9394-405. PubMed ID: 27512058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle.
    Ford-Speelman DL; Roche JA; Bowman AL; Bloch RJ
    Mol Biol Cell; 2009 Sep; 20(17):3905-17. PubMed ID: 19605563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional roles for the PH domain of Dbs in regulating Rho GTPase activation.
    Rossman KL; Cheng L; Mahon GM; Rojas RJ; Snyder JT; Whitehead IP; Sondek J
    J Biol Chem; 2003 May; 278(20):18393-400. PubMed ID: 12637522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1.
    Barz C; Abahji TN; Trülzsch K; Heesemann J
    FEBS Lett; 2000 Sep; 482(1-2):139-43. PubMed ID: 11018537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42.
    Weernink PA; Meletiadis K; Hommeltenberg S; Hinz M; Ishihara H; Schmidt M; Jakobs KH
    J Biol Chem; 2004 Feb; 279(9):7840-9. PubMed ID: 14681219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time NMR study of guanine nucleotide exchange and activation of RhoA by PDZ-RhoGEF.
    Gasmi-Seabrook GM; Marshall CB; Cheung M; Kim B; Wang F; Jang YJ; Mak TW; Stambolic V; Ikura M
    J Biol Chem; 2010 Feb; 285(8):5137-45. PubMed ID: 20018869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tumor-suppressive Small GTPase DiRas1 Binds the Noncanonical Guanine Nucleotide Exchange Factor SmgGDS and Antagonizes SmgGDS Interactions with Oncogenic Small GTPases.
    Bergom C; Hauser AD; Rymaszewski A; Gonyo P; Prokop JW; Jennings BC; Lawton AJ; Frei A; Lorimer EL; Aguilera-Barrantes I; Mackinnon AC; Noon K; Fierke CA; Williams CL
    J Biol Chem; 2016 Mar; 291(12):6534-45. PubMed ID: 26814130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.