These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19887706)

  • 41. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of the significance of a carbon and redox balance to the measurement of gaseous metabolism of Saccharomyces cerevisiae.
    Barford JP; Hall RJ
    Biotechnol Bioeng; 1979 Apr; 21(4):609-26. PubMed ID: 217465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Yeast as a model system for identification of metabolic targets of a 'glucosamine complex' used as a therapeutic agent of osteoarthritis.
    Dillemans M; Appelboom T; Van Nedervelde L
    Biomed Pharmacother; 2008 Nov; 62(9):645-50. PubMed ID: 18662850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae.
    Bijkerk AH; Hall RJ
    Biotechnol Bioeng; 1977 Feb; 19(2):267-96. PubMed ID: 322740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand.
    Seo KS; Choo KH; Chang HN; Park JK
    Appl Microbiol Biotechnol; 2009 May; 83(2):217-23. PubMed ID: 19153729
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae.
    Kostesha NV; Almeida JR; Heiskanen AR; Gorwa-Grauslund MF; Hahn-Hägerdal B; Emnéus J
    Anal Chem; 2009 Dec; 81(24):9896-901. PubMed ID: 19925001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability.
    Du D; Liu S; Chen J; Ju H; Lian H; Li J
    Biomaterials; 2005 Nov; 26(33):6487-95. PubMed ID: 15951013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Destabilization of energy-metabolism oscillation in the absence of trehalose synthesis in the chemostat culture of yeast.
    Xu Z; Tsurugi K
    Arch Biochem Biophys; 2007 Aug; 464(2):350-8. PubMed ID: 17531948
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.
    Lai W; Haile SM
    Phys Chem Chem Phys; 2008 Feb; 10(6):865-83. PubMed ID: 18231690
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectroelectrochemical examination of the interaction between bacterial cells and gold electrodes.
    Busalmen JP; Berna A; Feliu JM
    Langmuir; 2007 May; 23(11):6459-66. PubMed ID: 17447803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detecting oxygen consumption in the proximity of Saccharomyces cerevisiae cells using self-assembled fluorescent nanosensors.
    Kuang Y; Walt DR
    Biotechnol Bioeng; 2007 Feb; 96(2):318-25. PubMed ID: 16878334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol-gel modified gold electrode.
    Cheng J; Di J; Hong J; Yao K; Sun Y; Zhuang J; Xu Q; Zheng H; Bi S
    Talanta; 2008 Sep; 76(5):1065-9. PubMed ID: 18761156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aging and longevity of yeast colony populations: metabolic adaptation and differentiation.
    Váchová L; Palková Z
    Biochem Soc Trans; 2011 Oct; 39(5):1471-5. PubMed ID: 21936836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states.
    Lancaster G; Suprunenko YF; Jenkins K; Stefanovska A
    Sci Rep; 2016 Aug; 6():29584. PubMed ID: 27483987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on the direct electrochemistry of hemoglobin immobilized by yeast cells.
    Lu Q; Xu J; Huah S
    Chem Commun (Camb); 2006 Jul; (27):2860-2. PubMed ID: 17007397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions.
    Ruiz GA; Felice CJ
    Biosens Bioelectron; 2013 Nov; 49():341-7. PubMed ID: 23796533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microwell Array Based Opto-Electrochemical Detections Revealing Co-Adaptation of Rheological Properties and Oxygen Metabolism in Budding Yeast.
    Vajrala VS; Alric B; Laborde A; Colin C; Suraniti E; Temple-Boyer P; Arbault S; Delarue M; Launay J
    Adv Biol (Weinh); 2021 Jul; 5(7):e2100484. PubMed ID: 33969641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electric Field-Responsive Gold Nanoantennas for the Induction of a Locoregional Tumor pH Change Using Electrolytic Ablation Therapy.
    Joe A; Manivasagan P; Park JK; Han HW; Seo SH; Thambi T; Giang Phan VH; Kang SA; Conde J; Jang ES
    ACS Nano; 2024 Jul; 18(30):19581-96. PubMed ID: 38975706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrolytically generated oxygen microgradients for cell culture.
    Park JH; Bansal T; Maharbiz MM
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2683-6. PubMed ID: 17270829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.