These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19888343)

  • 1. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.
    Lefkimmiatis K; Moyer MP; Curci S; Hofer AM
    PLoS One; 2009 Nov; 4(11):e7649. PubMed ID: 19888343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα.
    Akimoto M; McNicholl ET; Ramkissoon A; Moleschi K; Taylor SS; Melacini G
    PLoS Biol; 2015; 13(11):e1002305. PubMed ID: 26618408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review article: cyclic AMP sensors in living cells: what signals can they actually measure?
    Rich TC; Karpen JW
    Ann Biomed Eng; 2002 Sep; 30(8):1088-99. PubMed ID: 12449769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.
    Castro LR; Guiot E; Polito M; Paupardin-Tritsch D; Vincent P
    Biotechnol J; 2014 Feb; 9(2):192-202. PubMed ID: 24478276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous assessment of cAMP signaling events in different cellular compartments using FRET-based reporters.
    Burdyga A; Lefkimmiatis K
    Methods Mol Biol; 2015; 1294():1-12. PubMed ID: 25783873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity in the cAMP/PKA signaling pathway. differential expression, regulation, and subcellular localization of subunits of PKA.
    Skålhegg BS; Taskén K
    Front Biosci; 1997 Jul; 2():d331-42. PubMed ID: 9236186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP.
    Wu J; Jones JM; Nguyen-Huu X; Ten Eyck LF; Taylor SS
    Biochemistry; 2004 Jun; 43(21):6620-9. PubMed ID: 15157095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring dynamic changes in cAMP using fluorescence resonance energy transfer.
    Evellin S; Mongillo M; Terrin A; Lissandron V; Zaccolo M
    Methods Mol Biol; 2004; 284():259-70. PubMed ID: 15173622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution of cAMP signals in three-dimensional microdomains using novel, real-time sensors.
    Karpen JW; Rich TC
    Proc West Pharmacol Soc; 2004; 47():1-5. PubMed ID: 15633600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cyclic adenosine 3',5'-monophosphate and protein kinase A on ligand-dependent transactivation via the vitamin D receptor.
    Nakajima S; Yamagata M; Sakai N; Ozono K
    Mol Cell Endocrinol; 2000 Jan; 159(1-2):45-51. PubMed ID: 10687851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic adenosine 3',5'-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism.
    Schiller M; Verrecchia F; Mauviel A
    Oncogene; 2003 Dec; 22(55):8881-90. PubMed ID: 14654784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Mapping of cAMP Signaling at the Nanometer Scale.
    Bock A; Annibale P; Konrad C; Hannawacker A; Anton SE; Maiellaro I; Zabel U; Sivaramakrishnan S; Falcke M; Lohse MJ
    Cell; 2020 Sep; 182(6):1519-1530.e17. PubMed ID: 32846156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disrupting the Allosteric Interaction between the Plasmodium falciparum cAMP-dependent Kinase and Its Regulatory Subunit.
    Littler DR; Bullen HE; Harvey KL; Beddoe T; Crabb BS; Rossjohn J; Gilson PR
    J Biol Chem; 2016 Dec; 291(49):25375-25386. PubMed ID: 27738107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 8-Chloroadenosine mediates 8-chloro-cyclic AMP-induced down-regulation of cyclic AMP-dependent protein kinase in normal and neoplastic mouse lung epithelial cells by a cyclic AMP-independent mechanism.
    Lange-Carter CA; Vuillequez JJ; Malkinson AM
    Cancer Res; 1993 Jan; 53(2):393-400. PubMed ID: 8380255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata.
    Demuyser L; Van Genechten W; Mizuno H; Colombo S; Van Dijck P
    Cell Microbiol; 2018 Oct; 20(10):e12863. PubMed ID: 29845711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of cyclic adenosine monophosphate microdomains in cells.
    Mongillo M; Terrin A; Evellin S; Lissandron V; Zaccolo M
    Methods Mol Biol; 2005; 307():1-13. PubMed ID: 15988051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site.
    Mitropoulou G; Bruzzone R
    J Neurosci Res; 2003 Apr; 72(2):147-57. PubMed ID: 12671989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of protein kinase A anchoring.
    Skroblin P; Grossmann S; Schäfer G; Rosenthal W; Klussmann E
    Int Rev Cell Mol Biol; 2010; 283():235-330. PubMed ID: 20801421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.