These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19888419)

  • 1. The number of catalytic elements is crucial for the emergence of metabolic cores.
    De la Fuente IM; Vadillo F; Pérez-Pinilla MB; Vera-López A; Veguillas J
    PLoS One; 2009 Oct; 4(10):e7510. PubMed ID: 19888419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global self-organization of the cellular metabolic structure.
    De La Fuente IM; Martínez L; Pérez-Samartín AL; Ormaetxea L; Amezaga C; Vera-López A
    PLoS One; 2008 Aug; 3(8):e3100. PubMed ID: 18769681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global self-regulation of the cellular metabolic structure.
    De la Fuente IM; Vadillo F; Pérez-Samartín AL; Pérez-Pinilla MB; Bidaurrazaga J; Vera-López A
    PLoS One; 2010 Mar; 5(3):e9484. PubMed ID: 20209156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attractor metabolic networks.
    De la Fuente IM; Cortes JM; Pelta DA; Veguillas J
    PLoS One; 2013; 8(3):e58284. PubMed ID: 23554883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolic core and catalytic switches are fundamental elements in the self-regulation of the systemic metabolic structure of cells.
    Fuente IM; Cortes JM; Perez-Pinilla MB; Ruiz-Rodriguez V; Veguillas J
    PLoS One; 2011; 6(11):e27224. PubMed ID: 22125607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of cellular metabolic dissipative, self-organized structures.
    de la Fuente IM
    Int J Mol Sci; 2010 Sep; 11(9):3540-99. PubMed ID: 20957111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity reaction core and plasticity of metabolic networks.
    Almaas E; Oltvai ZN; Barabási AL
    PLoS Comput Biol; 2005 Dec; 1(7):e68. PubMed ID: 16362071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal flux patterns in cellular metabolic networks.
    Almaas E
    Chaos; 2007 Jun; 17(2):026107. PubMed ID: 17614694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the effective functional structure in yeast glycolysis.
    De la Fuente IM; Cortes JM
    PLoS One; 2012; 7(2):e30162. PubMed ID: 22393350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence in metabolic nets.
    De la Fuente IM; Benitez N; Santamaria A; Aguirregabiria JM; Veguillas J
    Bull Math Biol; 1999 May; 61(3):573-95. PubMed ID: 17883232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous reaction silencing in metabolic optimization.
    Nishikawa T; Gulbahce N; Motter AE
    PLoS Comput Biol; 2008 Dec; 4(12):e1000236. PubMed ID: 19057639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different approaches for identifying subnetworks in metabolic networks.
    Rezvan A; Eslahchi C
    J Bioinform Comput Biol; 2017 Dec; 15(6):1750025. PubMed ID: 29187029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flux coupling analysis of genome-scale metabolic network reconstructions.
    Burgard AP; Nikolaev EV; Schilling CH; Maranas CD
    Genome Res; 2004 Feb; 14(2):301-12. PubMed ID: 14718379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organising metabolic networks: Cycles in flux distributions.
    Kritz MV; Trindade Dos Santos M; Urrutia S; Schwartz JM
    J Theor Biol; 2010 Aug; 265(3):250-60. PubMed ID: 20435049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exhaustive identification of steady state cycles in large stoichiometric networks.
    Wright J; Wagner A
    BMC Syst Biol; 2008 Jul; 2():61. PubMed ID: 18616835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks.
    Kun A; Papp B; Szathmáry E
    Genome Biol; 2008; 9(3):R51. PubMed ID: 18331628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the exceptionality of network motifs.
    Picard F; Daudin JJ; Koskas M; Schbath S; Robin S
    J Comput Biol; 2008; 15(1):1-20. PubMed ID: 18257674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the size of the solution space of metabolic networks.
    Braunstein A; Mulet R; Pagnani A
    BMC Bioinformatics; 2008 May; 9():240. PubMed ID: 18489757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.