BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19888689)

  • 1. (1)H, (15)N, and (13)C chemical shift assignments of the mosquito odorant binding protein-1 (CquiOBP1) bound to the mosquito oviposition pheromone.
    Xu X; Xu W; Ishida Y; Li Y; Leal WS; Ames JB
    Biomol NMR Assign; 2009 Dec; 3(2):195-7. PubMed ID: 19888689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone.
    Mao Y; Xu X; Xu W; Ishida Y; Leal WS; Ames JB; Clardy J
    Proc Natl Acad Sci U S A; 2010 Nov; 107(44):19102-7. PubMed ID: 20956299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations study of ligand-release mechanism in an odorant-binding protein from the southern house mosquito.
    Yu H; Zhao X; Feng XL; Chen X; Borowiak-Palen E; Huang XR
    J Biomol Struct Dyn; 2013; 31(5):485-94. PubMed ID: 22889417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants.
    Pelletier J; Guidolin A; Syed Z; Cornel AJ; Leal WS
    J Chem Ecol; 2010 Mar; 36(3):245-8. PubMed ID: 20191395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constant pH molecular dynamics (CpHMD) and molecular docking studies of CquiOBP1 pH-induced ligand releasing mechanism.
    Chu WT; Zhang JL; Zheng QC; Chen L; Wu YJ; Xue Q; Zhang HX
    J Mol Model; 2013 Mar; 19(3):1301-9. PubMed ID: 23179772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights on pH-dependent conformational changes of mosquito odorant binding proteins by molecular dynamics simulations.
    Manoharan M; Fuchs PF; Sowdhamini R; Offmann B
    J Biomol Struct Dyn; 2014; 32(11):1742-51. PubMed ID: 24028686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi-based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior.
    Zhu F; Xu P; Barbosa RM; Choo YM; Leal WS
    Insect Biochem Mol Biol; 2013 Oct; 43(10):916-23. PubMed ID: 23911547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes.
    Leal WS; Barbosa RM; Xu W; Ishida Y; Syed Z; Latte N; Chen AM; Morgan TI; Cornel AJ; Furtado A
    PLoS One; 2008 Aug; 3(8):e3045. PubMed ID: 18725946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the mechanism of odorant detection by the malaria-transmitting mosquito Anopheles gambiae.
    Davrazou F; Dong E; Murphy EJ; Johnson HT; Jones DN
    J Biol Chem; 2011 Sep; 286(39):34175-83. PubMed ID: 21816826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oviposition signals and their neuroethological correlates in the Culex pipiens complex.
    Sullivan GA; Liu C; Syed Z
    Infect Genet Evol; 2014 Dec; 28():735-43. PubMed ID: 25460826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity of odorant-binding proteins from the southern house mosquito tested against physiologically relevant ligands.
    Yin J; Choo YM; Duan H; Leal WS
    Front Physiol; 2015; 6():56. PubMed ID: 25774136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional Synthesis of 6-Acetoxy-5-hexadecanolide, the Mosquito Oviposition Pheromone of Culex quinquefasciatus, from a C
    Schmidt B; Petersen MH; Braun D
    J Org Chem; 2018 Feb; 83(3):1627-1633. PubMed ID: 29294276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse chemical ecology approach for the identification of an oviposition attractant for
    Choo YM; Xu P; Hwang JK; Zeng F; Tan K; Bhagavathy G; Chauhan KR; Leal WS
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):714-719. PubMed ID: 29311316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 40-Year Mystery of Insect Odorant-Binding Proteins.
    Rihani K; Ferveur JF; Briand L
    Biomolecules; 2021 Mar; 11(4):. PubMed ID: 33808208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants.
    Pelletier J; Hughes DT; Luetje CW; Leal WS
    PLoS One; 2010 Apr; 5(4):e10090. PubMed ID: 20386699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein.
    Damberger FF; Michel E; Ishida Y; Leal WS; Wüthrich K
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18680-5. PubMed ID: 24158483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of odorant binding proteins in Carpomya vesuviana and their binding affinity to the male-borne semiochemicals and host plant volatiles.
    Li Y; Zhou P; Zhang J; Yang D; Li Z; Zhang X; Zhu S; Yu Y; Chen N
    J Insect Physiol; 2017 Jul; 100():100-107. PubMed ID: 28571710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing insect odorant receptors with their cognate ligands: insights into structural features.
    Xu P; Leal WS
    Biochem Biophys Res Commun; 2013 Jun; 435(3):477-82. PubMed ID: 23673297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attract-and-kill strategy. Laboratory studies on hatched larvae of Culex pipiens.
    Michaelakis A; Mihou AP; Koliopoulos G; Couladouros EA
    Pest Manag Sci; 2007 Oct; 63(10):954-9. PubMed ID: 17708518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti.
    Leal GM; Leal WS
    F1000Res; 2014; 3():305. PubMed ID: 25671088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.