These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19888774)

  • 1. Energy-consistent pseudopotentials for the 5d elements--benchmark calculations for oxides, nitrides, and Pt(2).
    Spohn B; Goll E; Stoll H; Figgen D; Peterson KA
    J Phys Chem A; 2009 Nov; 113(45):12478-84. PubMed ID: 19888774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt.
    Figgen D; Peterson KA; Dolg M; Stoll H
    J Chem Phys; 2009 Apr; 130(16):164108. PubMed ID: 19405562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the performance of two-component energy-consistent pseudopotentials in atomic Fock-space coupled cluster calculations.
    Figgen D; Wedig A; Stoll H; Dolg M; Eliav E; Kaldor U
    J Chem Phys; 2008 Jan; 128(2):024106. PubMed ID: 18205442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: spin-orbit configuration interaction and Fock-space coupled-cluster study of U4+ and U5+.
    Weigand A; Cao X; Vallet V; Flament JP; Dolg M
    J Phys Chem A; 2009 Oct; 113(43):11509-16. PubMed ID: 19601603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: benchmarks and new pseudopotential-based correlation consistent basis sets.
    Peterson KA; Yousaf KE
    J Chem Phys; 2010 Nov; 133(17):174116. PubMed ID: 21054015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects.
    Hangele T; Dolg M; Schwerdtfeger P
    J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-consistent pseudopotentials for quantum Monte Carlo calculations.
    Burkatzki M; Filippi C; Dolg M
    J Chem Phys; 2007 Jun; 126(23):234105. PubMed ID: 17600402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-consistent relativistic pseudopotentials for the 4d elements: atomic and molecular applications.
    Figgen D; Peterson KA; Stoll H
    J Chem Phys; 2008 Jan; 128(3):034110. PubMed ID: 18205491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic energy-consistent pseudopotentials--recent developments.
    Stoll H; Metz B; Dolg M
    J Comput Chem; 2002 Jun; 23(8):767-78. PubMed ID: 12012353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate relativistic small-core pseudopotentials for actinides. energy adjustment for uranium and first applications to uranium hydride.
    Dolg M; Cao X
    J Phys Chem A; 2009 Nov; 113(45):12573-81. PubMed ID: 19552393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled-cluster connected quadruples and quintuples corrections to the harmonic vibrational frequencies and equilibrium bond distances of HF, N(2), F(2), and CO.
    Ruden TA; Helgaker T; Jørgensen P; Olsen J
    J Chem Phys; 2004 Sep; 121(12):5874-84. PubMed ID: 15367015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations.
    Burkatzki M; Filippi C; Dolg M
    J Chem Phys; 2008 Oct; 129(16):164115. PubMed ID: 19045255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The barrier height of the F+H2 reaction revisited: coupled-cluster and multireference configuration-interaction benchmark calculations.
    Werner HJ; Kállay M; Gauss J
    J Chem Phys; 2008 Jan; 128(3):034305. PubMed ID: 18205496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variational and diffusion Monte Carlo study of post-d group 13-17 elements.
    Al-Saidi WA
    J Chem Phys; 2008 Aug; 129(6):064316. PubMed ID: 18715078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic small-core pseudopotentials for actinium, thorium, and protactinium.
    Weigand A; Cao X; Hangele T; Dolg M
    J Phys Chem A; 2014 Apr; 118(13):2519-30. PubMed ID: 24628327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of relativistic energy-consistent pseudopotentials for superheavy elements 111-118: molecular calibration calculations.
    Hangele T; Dolg M
    J Chem Phys; 2013 Jan; 138(4):044104. PubMed ID: 23387565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.