These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 19888933)

  • 21. Cerebral Arterial Compliance in Traumatic Brain Injury.
    Dobrzeniecki M; Trofimov A; Bragin DE
    Acta Neurochir Suppl; 2018; 126():21-24. PubMed ID: 29492525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide.
    Golestani AM; Kwinta JB; Strother SC; Khatamian YB; Chen JJ
    Neuroimage; 2016 May; 132():301-313. PubMed ID: 26908321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity.
    Halani S; Kwinta JB; Golestani AM; Khatamian YB; Chen JJ
    Neuroimage; 2015 Apr; 110():110-23. PubMed ID: 25655446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-based indices describing cerebrovascular dynamics.
    Varsos GV; Kasprowicz M; Smielewski P; Czosnyka M
    Neurocrit Care; 2014 Feb; 20(1):142-57. PubMed ID: 24091657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vasospasm shortens cerebral arterial time constant.
    Kasprowicz M; Czosnyka M; Soehle M; Smielewski P; Kirkpatrick PJ; Pickard JD; Budohoski KP
    Neurocrit Care; 2012 Apr; 16(2):213-8. PubMed ID: 22108783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury.
    Radolovich DK; Aries MJ; Castellani G; Corona A; Lavinio A; Smielewski P; Pickard JD; Czosnyka M
    Neurocrit Care; 2011 Dec; 15(3):379-86. PubMed ID: 21805216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in cerebral compartmental compliances during mild hypocapnia in patients with traumatic brain injury.
    Carrera E; Steiner LA; Castellani G; Smielewski P; Zweifel C; Haubrich C; Pickard JD; Menon DK; Czosnyka M
    J Neurotrauma; 2011 Jun; 28(6):889-96. PubMed ID: 21204704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of PaCO2 derangements on clinical outcomes after cerebral injury: A systematic review.
    Roberts BW; Karagiannis P; Coletta M; Kilgannon JH; Chansky ME; Trzeciak S
    Resuscitation; 2015 Jun; 91():32-41. PubMed ID: 25828950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypercapnia and hypocapnia in neonates.
    Zhou W; Liu W
    World J Pediatr; 2008 Aug; 4(3):192-6. PubMed ID: 18822927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models.
    Uryga A; Kasprowicz M; Calviello L; Diehl RR; Kaczmarska K; Czosnyka M
    J Clin Monit Comput; 2019 Feb; 33(1):85-94. PubMed ID: 29619647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of pulsatile cerebral arterial blood volume based on transcranial doppler signals.
    Calviello LA; Zeiler FA; Donnelly J; Uryga A; de Riva N; Smielewski P; Czosnyka M
    Med Eng Phys; 2019 Dec; 74():23-32. PubMed ID: 31648880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia.
    Coverdale NS; Gati JS; Opalevych O; Perrotta A; Shoemaker JK
    J Appl Physiol (1985); 2014 Nov; 117(10):1090-6. PubMed ID: 25012027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI.
    Verbree J; Bronzwaer AS; Ghariq E; Versluis MJ; Daemen MJ; van Buchem MA; Dahan A; van Lieshout JJ; van Osch MJ
    J Appl Physiol (1985); 2014 Nov; 117(10):1084-9. PubMed ID: 25190741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebral vasomotor reactivity during hypo- and hypercapnia across the adult lifespan.
    Tomoto T; Riley J; Turner M; Zhang R; Tarumi T
    J Cereb Blood Flow Metab; 2020 Mar; 40(3):600-610. PubMed ID: 30764704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects.
    Carrera E; Kim DJ; Castellani G; Zweifel C; Smielewski P; Pickard JD; Czosnyka M
    J Neuroimaging; 2011 Apr; 21(2):121-5. PubMed ID: 19888933
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.