These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 19889033)
1. Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils. Morgante V; López-López A; Flores C; González M; González B; Vásquez M; Rosselló-Mora R; Seeger M FEMS Microbiol Ecol; 2010 Jan; 71(1):114-26. PubMed ID: 19889033 [TBL] [Abstract][Full Text] [Related]
2. Influence of microorganisms and leaching on simazine attenuation in an agricultural soil. Morgante V; Flores C; Fadic X; González M; Hernández M; Cereceda-Balic F; Seeger M J Environ Manage; 2012 Mar; 95 Suppl():S300-5. PubMed ID: 21802195 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41. Hernández M; Villalobos P; Morgante V; González M; Reiff C; Moore E; Seeger M FEMS Microbiol Lett; 2008 Sep; 286(2):184-90. PubMed ID: 18647357 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil. Wan R; Wang Z; Xie S Sci Total Environ; 2014 Feb; 472():502-8. PubMed ID: 24317158 [TBL] [Abstract][Full Text] [Related]
5. Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. ADP. Morán AC; Müller A; Manzano M; González B J Appl Microbiol; 2006 Jul; 101(1):26-35. PubMed ID: 16834588 [TBL] [Abstract][Full Text] [Related]
6. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization. Caracciolo AB; Grenni P; Ciccoli R; Di Landa G; Cremisini C Pest Manag Sci; 2005 Sep; 61(9):863-9. PubMed ID: 16015577 [TBL] [Abstract][Full Text] [Related]
7. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources. Wan R; Yang Y; Sun W; Wang Z; Xie S Environ Sci Pollut Res Int; 2014 Feb; 21(4):3175-81. PubMed ID: 24194418 [TBL] [Abstract][Full Text] [Related]
8. Analysis of s-triazine-degrading microbial communities in soils using most-probable-number enumeration and tetrazolium-salt detection. Dinamarca MA; Cereceda-Balic F; Fadic X; Seeger M Int Microbiol; 2007 Sep; 10(3):209-15. PubMed ID: 18076003 [TBL] [Abstract][Full Text] [Related]
9. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. Wolf DC; Cryder Z; Gan J Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356 [TBL] [Abstract][Full Text] [Related]
10. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities. Guo Q; Wan R; Xie S Environ Sci Pollut Res Int; 2014 Jan; 21(1):337-43. PubMed ID: 23771408 [TBL] [Abstract][Full Text] [Related]
12. Degradation of simazine by microorganisms isolated from soils of Spanish olive fields. Santiago-Mora R; Martin-Laurent F; de Prado R; Franco AR Pest Manag Sci; 2005 Sep; 61(9):917-21. PubMed ID: 16007568 [TBL] [Abstract][Full Text] [Related]
13. Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples. Martín M; Gibello A; Lobo C; Nande M; Garbi C; Fajardo C; Barra-Caracciolo A; Grenni P; Martínez-Iñigo MJ Chemosphere; 2008 Mar; 71(4):703-10. PubMed ID: 18082866 [TBL] [Abstract][Full Text] [Related]
14. Evidence for cross-adaptation between s-triazine herbicides resulting in reduced efficacy under field conditions. Krutz LJ; Burke IC; Reddy KN; Zablotowicz RM Pest Manag Sci; 2008 Oct; 64(10):1024-30. PubMed ID: 18473320 [TBL] [Abstract][Full Text] [Related]
15. Occurrence, diversity and community structure of culturable atrazine degraders in industrial and agricultural soils exposed to the herbicide in Shandong Province, P.R. China. Bazhanov DP; Li C; Li H; Li J; Zhang X; Chen X; Yang H BMC Microbiol; 2016 Nov; 16(1):265. PubMed ID: 27821056 [TBL] [Abstract][Full Text] [Related]
16. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. Stallwood B; Shears J; Williams PA; Hughes KA J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230 [TBL] [Abstract][Full Text] [Related]
17. Bacterial diversity and bioaugmentation in floodwater of a paddy field in the presence of the herbicide molinate. Barreiros L; Manaia CM; Nunes OC Biodegradation; 2011 Apr; 22(2):445-61. PubMed ID: 20862524 [TBL] [Abstract][Full Text] [Related]
18. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Lima D; Viana P; André S; Chelinho S; Costa C; Ribeiro R; Sousa JP; Fialho AM; Viegas CA Chemosphere; 2009 Jan; 74(2):187-92. PubMed ID: 19004466 [TBL] [Abstract][Full Text] [Related]
19. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Pepper IL; Gentry TJ; Newby DT; Roane TM; Josephson KL Environ Health Perspect; 2002 Dec; 110 Suppl 6(Suppl 6):943-6. PubMed ID: 12634123 [TBL] [Abstract][Full Text] [Related]
20. Effects of combination of plant and microorganism on degradation of simazine in soil. Liao M; Xie X J Environ Sci (China); 2008; 20(2):195-8. PubMed ID: 18574961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]