These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 19889492)
21. Will photosynthetic capacity of aspen trees acclimate after long-term exposure to elevated CO2 and O3? Darbah JN; Kubiske ME; Nelson N; Kets K; Riikonen J; Sober A; Rouse L; Karnosky DF Environ Pollut; 2010 Apr; 158(4):983-91. PubMed ID: 19910096 [TBL] [Abstract][Full Text] [Related]
22. Interactive effects of elevated CO2 and ozone on leaf thermotolerance in field-grown Glycine max. Mishra S; Heckathorn SA; Barua D; Wang D; Joshi P; Hamilton Iii EW; Frantz J J Integr Plant Biol; 2008 Nov; 50(11):1396-405. PubMed ID: 19017127 [TBL] [Abstract][Full Text] [Related]
23. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. McGrath JM; Karnosky DF; Ainsworth EA Environ Pollut; 2010 Apr; 158(4):1023-8. PubMed ID: 19625117 [TBL] [Abstract][Full Text] [Related]
24. DNA damage in Populus tremuloides clones exposed to elevated O3. Tai HH; Percy KE; Karnosky DF Environ Pollut; 2010 Apr; 158(4):969-76. PubMed ID: 19879681 [TBL] [Abstract][Full Text] [Related]
25. Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula. Mäenpää M; Riikonen J; Kontunen-Soppela S; Rousi M; Oksanen E Tree Physiol; 2011 Aug; 31(8):808-18. PubMed ID: 21856655 [TBL] [Abstract][Full Text] [Related]
26. Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation. Kets K; Darbah JN; Sober A; Riikonen J; Sober J; Karnosky DF Environ Pollut; 2010 Apr; 158(4):1000-7. PubMed ID: 19796856 [TBL] [Abstract][Full Text] [Related]
27. Phenogenetic response of silver birch populations and half-sib families to elevated ozone and ultraviolet-B radiation at juvenile age. Pliura A; Baliuckiene A; Baliuckas V Environ Pollut; 2008 Nov; 156(1):152-61. PubMed ID: 18262319 [TBL] [Abstract][Full Text] [Related]
28. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564 [TBL] [Abstract][Full Text] [Related]
29. Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Calfapietra C; Wiberley AE; Falbel TG; Linskey AR; Mugnozza GS; Karnosky DF; Loreto F; Sharkey TD Plant Cell Environ; 2007 May; 30(5):654-61. PubMed ID: 17407542 [TBL] [Abstract][Full Text] [Related]
30. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates. Foss AR; Mattson WJ; Trier TM Environ Entomol; 2013 Jun; 42(3):503-14. PubMed ID: 23726059 [TBL] [Abstract][Full Text] [Related]
31. Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): reproductive fitness. Darbah JN; Kubiske ME; Nelson N; Oksanen E; Vaapavuori E; Karnosky DF ScientificWorldJournal; 2007 Mar; 7 Suppl 1():240-6. PubMed ID: 17450302 [TBL] [Abstract][Full Text] [Related]
33. Systemic signalling of environmental cues in Arabidopsis leaves. Coupe SA; Palmer BG; Lake JA; Overy SA; Oxborough K; Woodward FI; Gray JE; Quick WP J Exp Bot; 2006; 57(2):329-41. PubMed ID: 16330523 [TBL] [Abstract][Full Text] [Related]
34. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots. Chapman JA; King JS; Pregitzer KS; Zak DR Tree Physiol; 2005 Dec; 25(12):1501-10. PubMed ID: 16137936 [TBL] [Abstract][Full Text] [Related]
35. Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris. Yendrek CR; Leisner CP; Ainsworth EA Glob Chang Biol; 2013 Oct; 19(10):3155-66. PubMed ID: 23625780 [TBL] [Abstract][Full Text] [Related]
36. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Darbah JN; Sharkey TD; Calfapietra C; Karnosky DF Environ Pollut; 2010 Apr; 158(4):1008-14. PubMed ID: 19914751 [TBL] [Abstract][Full Text] [Related]
37. Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure. Hoshika Y; Watanabe M; Inada N; Mao Q; Koike T Environ Pollut; 2013 Nov; 182():242-7. PubMed ID: 23938447 [TBL] [Abstract][Full Text] [Related]
38. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Le Quéré A; Wright DP; Söderström B; Tunlid A; Johansson T Mol Plant Microbe Interact; 2005 Jul; 18(7):659-73. PubMed ID: 16042012 [TBL] [Abstract][Full Text] [Related]
39. Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO(2) and O(3). Kostiainen K; Kaakinen S; Warsta E; Kubiske ME; Nelson ND; Sober J; Karnosky DF; Saranpää P; Vapaavuori E Tree Physiol; 2008 May; 28(5):805-13. PubMed ID: 18316312 [TBL] [Abstract][Full Text] [Related]
40. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Löw M; Häberle KH; Warren CR; Matyssek R Plant Biol (Stuttg); 2007 Mar; 9(2):197-206. PubMed ID: 17357014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]