These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19889704)

  • 1. Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa.
    Hall AR; Griffiths VF; MacLean RC; Colegrave N
    Proc Biol Sci; 2010 Feb; 277(1681):643-50. PubMed ID: 19889704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cost of multiple drug resistance in Pseudomonas aeruginosa.
    Ward H; Perron GG; Maclean RC
    J Evol Biol; 2009 May; 22(5):997-1003. PubMed ID: 19298493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance.
    Vogwill T; Kojadinovic M; Furió V; MacLean RC
    Mol Biol Evol; 2014 Dec; 31(12):3314-23. PubMed ID: 25228081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.
    Hall AR; MacLean RC
    Evolution; 2011 Aug; 65(8):2370-9. PubMed ID: 21790582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.
    Wong A; Rodrigue N; Kassen R
    PLoS Genet; 2012 Sep; 8(9):e1002928. PubMed ID: 23028345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa.
    MacLean RC; Buckling A
    PLoS Genet; 2009 Mar; 5(3):e1000406. PubMed ID: 19266075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa.
    Qi Q; Toll-Riera M; Heilbron K; Preston GM; MacLean RC
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa.
    Gifford DR; Toll-Riera M; MacLean RC
    Evolution; 2016 Jul; 70(7):1659-66. PubMed ID: 27230588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa.
    Gifford DR; Moss E; MacLean RC
    Evolution; 2016 Mar; 70(3):725-30. PubMed ID: 26880677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary dynamics of bacteria in a human host environment.
    Yang L; Jelsbak L; Marvig RL; Damkiær S; Workman CT; Rau MH; Hansen SK; Folkesson A; Johansen HK; Ciofu O; Høiby N; Sommer MO; Molin S
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7481-6. PubMed ID: 21518885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of Rif(r) mutations in Pseudomonas aeruginosa and Pseudomonas putida.
    Jatsenko T; Tover A; Tegova R; Kivisaar M
    Mutat Res; 2010 Jan; 683(1-2):106-14. PubMed ID: 19887074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria.
    Perron GG; Hall AR; Buckling A
    Am Nat; 2010 Sep; 176(3):303-11. PubMed ID: 20624092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integron-mediated rifampin resistance in Pseudomonas aeruginosa.
    Tribuddharat C; Fennewald M
    Antimicrob Agents Chemother; 1999 Apr; 43(4):960-2. PubMed ID: 10103210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment.
    Heilbron K; Toll-Riera M; Kojadinovic M; MacLean RC
    Genetics; 2014 Jul; 197(3):981-90. PubMed ID: 24814466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra.
    Weigand MR; Sundin GW
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13680-5. PubMed ID: 22869726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism of rifamycin inhibition and resistance in Pseudomonas aeruginosa.
    Yee YC; Kisslinger B; Yu VL; Jin DJ
    J Antimicrob Chemother; 1996 Jul; 38(1):133-7. PubMed ID: 8858465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.
    Marvig RL; Sommer LM; Molin S; Johansen HK
    Nat Genet; 2015 Jan; 47(1):57-64. PubMed ID: 25401299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung.
    Diaz Caballero J; Clark ST; Coburn B; Zhang Y; Wang PW; Donaldson SL; Tullis DE; Yau YC; Waters VJ; Hwang DM; Guttman DS
    mBio; 2015 Sep; 6(5):e00981-15. PubMed ID: 26330513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains.
    Varga JJ; Barbier M; Mulet X; Bielecki P; Bartell JA; Owings JP; Martinez-Ramos I; Hittle LE; Davis MR; Damron FH; Liechti GW; Puchałka J; dos Santos VA; Ernst RK; Papin JA; Albertí S; Oliver A; Goldberg JB
    BMC Genomics; 2015 Oct; 16():883. PubMed ID: 26519161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.